## CS Bridge, Lecture 9

Graphics and Nested Loops


## Creating Graphical Objects

```
canvas.create line ( }\mp@subsup{x}{0}{},\mp@subsup{y}{0}{},\mp@subsup{x}{1}{},\mp@subsup{y}{1}{\prime}
    Creates a new linē connecting (x0, y0) and (x1, y1).
canvas.create_rectangle ( }\mp@subsup{x}{0,}{},\mp@subsup{y}{0}{\prime},\mp@subsup{x}{1}{},\mp@subsup{y}{1}{}
    Creates a new rectangle on the canvas the size of this bounding box.
canvas.create oval ( }\mp@subsup{x}{0}{},\mp@subsup{y}{0}{},\mp@subsup{x}{1}{},\mp@subsup{y}{1}{}
    Creates a new ovaT on the canvas contained within this bounding box.
canvas.create_text (x,y,text)
Creates text on the canvas with the specified contents, centered at (x,y).
```


## canvas. create_image ( $x, y$, filepath )

Creates a new image on the canvas from the specified file, with top-left corner at ( $\mathrm{x}, \mathrm{y}$ ).

## Operations on Graphical Objects

```
canvas.moveto (object, x, y)
    Sets the location of obj to the specified coordinates.
canvas set_color (object, color)
    Sets the outime and fill color (if applicable) of the object.
canvas set_qutline_color(object, color)
    Sets the outime color of the object.
canvas set fill_color (object, color)
    Sets the fill color of the object.
canvas set font (object, font, size)
    Sets the font and font size for the given text object.
canvas.delete (object)
    Deletes the object from the canvas
```



## Drawing with Loops

Goal for today: draw checker board 64 squares


## Drawing with Loops



## Drawing with Loops

Decomposition


## Drawing with Loops

Decomposition
$\rightarrow$ draw_row()

: -

## Drawing with Loops

Decomposition draw_row()
draw_square()


What should be the parameters of each of these functions? (Assume constant square size)

Is black or not
draw_row(??)
draw_square(??)


Is black or not

## Draw square without using a function

```
from graphics import Canvas
SQUARE_SIZE = 60
x, y }
Is black or not
def main():
    canvas = Canvas(120, 120)
    x = 30
    As the next step, let's implement a draw_square() function
                                    and call it
    y = 30
    is_black = True
    square = canvas.create_rectangle(x, y, x + SQUARE_SIZE, y + SQUARE_SIZE)
    if is_black:
        color = 'black'
    else:
        color = 'white'
    canvas.set_fill_color(square, color)
    canvas.mainloop()
```


## Draw square via defining and calling a function

from graphics import Canvas
def main():
canvas $=$ Canvas $(120,120)$
draw_square(canvas, 30, 30, True)
canvas.mainloop()

```
SQUARE_SIZE = 60
```

```
SQUARE_SIZE = 60
```


## Calling the function

canvas $=$ Canvas $(120,120)$
draw_square(canvas, 30, 30, True)
canvas.mainloop()


```
def draw_square(canvas, x, y, is_black):
```

    square = canvas.create_rectangle( \(\mathrm{x}, \mathrm{y}, \mathrm{x}+\) SQUARE_SIZE, \(^{\mathrm{y}}+\mathrm{S}\) SQUARE_SIZE)
    if is_black:
        color = 'black'
    else:
        color = 'white'
    canvas.set_fill_color(square, color)
    
## Implement draw_row() that calls the draw_square() function

$$
\text { NUM_COLS = } 8
$$

Number of squares/columns

```
def main():
    canvas = Canvas(500, 200)
    is_black = True
    draw_row(canvas, NUM_COLS, 10, 10, is_black)
    is_black = False
    draw_row(canvas, NUM_COLS, 10, 100, is_black)
    canvas.mainloop()
def draw_row(canvas, num_squares, x0, y0, is_black):
    for i in range(num_squares):
        x = x0 + i * SQUARE_SIZE 
```


## Draw checker board calling draw_row()

```
SQUARE_SIZE = 30
NUM_ROWS = 8
NUM_COLS = 8
def main():
    canvas = Canvas(260, 260)
    is_black = True
    x0 = 10
    y0 = 10
    for i in range(NUM_ROWS):
        y = y0 + i * SQUARE_SIZE 
        is_black = not is_black
    canvas.mainloop()
```



## Drawing checker board using nested loops

```
SQUARE_SIZE = 30
NUM_ROWS = 8
NUM_COLS = 8
```



```
Is black or not
```

```
def main():
```

def main():
canvas = Canvas(260, 260)
is_black = True
x0 = 10
y0 = 10
for i in range(NUM_ROWS):
for j in range(NUM_COLS):
x = x0 + j * SQUARE_SIZE
y = y0 + i * SQUARE_SIZE
is_black = (i + j) % 2 == 0
draw_square(canvas, x, y, is_black)
canvas.mainloop()

```

\section*{Drawing checker board using nested loops}
```

SQUARE_SIZE = 30
def main():
canvas = Canvas(260, 260)
is_black = True
x0 = 10
y0 = 10
for i in range(NUM_ROWS):
for j in range(NUM_COLS):
x = x0 + j * SQUARE_SIZE
y = y0 + i * SQUARE_SIZE
is_black = (i + j) % 2 == 0
draw_square(canvas, x, y, is_black)
canvas.mainloop()

```


\section*{Drawing checker board using nested loops}
```

SQUARE_SIZE = 30
def main():
canvas = Canvas(260, 260)
is_black = True
x0 = 10
y0 = 10
for i in range(NUM_ROWS):
for j in range(NUM_COLS):
x = x0 + j * SQUARE_SIZE
y = y0 + i * SQUARE_SIZE
is_black = (i + j) % 2 == 0
draw_square(canvas, x, y, is_black)
canvas.mainloop()

```


\section*{Drawing checker board using nested loops}
```

SQUARE_SIZE = 30
def main():
canvas = Canvas(260, 260)
is_black = True
x0 = 10
y0 = 10
for i in range(NUM_ROWS):
for j in range(NUM_COLS):
x = x0 + j * SQUARE_SIZE x=10
y = y0 + i * SQUARE_SIZE
is_black = (i + j) % 2 == 0
draw_square(canvas, x, y, is_black)
canvas.mainloop()

```


\section*{Drawing checker board using nested loops}
```

SQUARE_SIZE = 30
def main():
canvas = Canvas(260, 260)
is_black = True
x0 = 10
y0 = 10
for i in range(NUM_ROWS):
for j in range(NUM_COLS):
x = x0 + j * SQUARE_SIZE
y = y0 + i * SQUARE_SIZE
is_black = (i + j) % 2 == 0
draw_square(canvas, x, y, is_black)
canvas.mainloop()

```


\section*{Drawing checker board using nested loops}
```

SQUARE_SIZE = 30
def main():
canvas = Canvas(260, 260)
is_black = True
x0 = 10
y0 = 10
for i in range(NUM_ROWS):
for j in range(NUM_COLS):
x = x0 + j * SQUARE_SIZE
y = y0 + i * SQUARE_SIZE
is_black = (i + j) % 2 == 0)is_black = True
draw_square(canvas, x, y, is_black)

```
    canvas.mainloop()


\section*{Drawing checker board using nested loops}


\section*{Drawing checker board using nested loops}
```

SQUARE_SIZE = 30
def main():
canvas = Canvas(260, 260)
is_black = True
x0 = 10
y0 = 10
for i in range(NUM_ROWS):
for j in range(NUM_COLS):
x = x0 + j * SQUARE_SIZE
y = y0 + i * SQUARE_SIZE
is_black = (i + j) % 2 == 0
draw_square(canvas, x, y, is_black)
canvas.mainloop()

```


\section*{Drawing checker board using nested loops}
```

SQUARE_SIZE = 30
def main():
canvas = Canvas(260, 260)
is_black = True
x0 = 10
y0 = 10
for i in range(NUM_ROWS):
for j in range(NUM_COLS):
x = x0 + j * SQUARE_SIZE x=40
y = y0 + i * SQUARE_SIZE
is_black = (i + j) % 2 == 0
draw_square(canvas, x, y, is_black)
canvas.mainloop()

```


\section*{Drawing checker board using nested loops}
```

SQUARE_SIZE = 30
def main():
canvas = Canvas(260, 260)
is_black = True
x0 = 10
y0 = 10
for i in range(NUM_ROWS):
for j in range(NUM_COLS):
x = x0 + j * SQUARE_SIZE
y = y0 + i * SQUARE_SIZE
is_black = (i + j) % 2 == 0
draw_square(canvas, x, y, is_black)
canvas.mainloop()

```


\section*{Drawing checker board using nested loops}
```

def main():
canvas = Canvas(260, 260)
is_black = True
x0 = 10
y0 = 10
for i in range(NUM_ROWS):
for j in range(NUM_COLS):
x = x0 + j * SQUARE_SIZE
y = y0 + i * SQUARE_SIZE
is_black = (i + j) % 2 == 0)is_black = False
draw_square(canvas, x, y, is_black)

```
    canvas.mainloop()


\section*{Drawing checker board using nested loops}


\section*{Drawing checker board using nested loops}
```

SQUARE_SIZE = 30
def main():
canvas = Canvas(260, 260)
is_black = True
x0 = 10
y0 = 10
for i in range(NUM_ROWS):
for j in range(NUM_COLS):
x = x0 + j * SQUARE_SIZE
y = y0 + i * SQUARE_SIZE
is_black = (i + j) % 2 == 0
draw_square(canvas, x, y, is_black)
canvas.mainloop()

```


\section*{Drawing checker board using nested loops}
```

SQUARE_SIZE = 30
def main():
canvas = Canvas(260, 260)
is_black = True
x0 = 10
y0 = 10
for i in range(NUM_ROWS):
for j in range(NUM_COLS):
x = x0 + j * SQUARE_SIZE x=70
y = y0 + i * SQUARE_SIZE
is_black = (i + j) % 2 == 0
draw_square(canvas, x, y, is_black)
canvas.mainloop()

```


\section*{Drawing checker board using nested loops}
```

SQUARE_SIZE = 30
def main():
canvas = Canvas(260, 260)
is_black = True
x0 = 10
y0 = 10
for i in range(NUM_ROWS):
for j in range(NUM_COLS):
x = x0 + j * SQUARE_SIZE x=70
y = y0 + i * SQUARE_SIZE
is_black = (i + j) % 2 == 0
draw_square(canvas, x, y, is_black)
canvas.mainloop()

```


\section*{Drawing checker board using nested loops}
```

def main():
canvas = Canvas(260, 260)
is_black = True
x0 = 10
y0 = 10
for i in range(NUM_ROWS):
for j in range(NUM_COLS):
x = x0 + j * SQUARE_SIZE
y = y0 + i * SQUARE_SIZE
is_black = (i + j) % 2 == 0)is_black = True
draw_square(canvas, x, y, is_black)

```
    canvas.mainloop()


\section*{Drawing checker board using nested loops}


\section*{Many loops pass....}


\section*{Drawing checker board using nested loops}
```

SQUARE_SIZE = 30
def main():
canvas = Canvas(260, 260)
is_black = True
x0 = 10
y0 = 10
for i in range(NUM_ROWS):
for j in range(NUM_COLS):
x = x0 + j * SQUARE_SIZE
y = y0 + i * SQUARE_SIZE
is_black = (i + j) % 2 == 0
draw_square(canvas, x, y, is_black)
canvas.mainloop()

```


\section*{Drawing checker board using nested loops}
```

SQUARE_SIZE = 30
def main():
canvas = Canvas(260, 260)
is_black = True
x0 = 10
y0 = 10
for i in range(NUM_ROWS):
for j in range(NUM_COLS):
x = x0 + j * SQUARE_SIZE
y = y0 + i * SQUARE_SIZE
is_black = (i + j) % 2 == 0
draw_square(canvas, x, y, is_black)
canvas.mainloop()

```
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline\(O O O\) & \multicolumn{6}{|c|}{ Canvas } \\
\hline \hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

\section*{Drawing checker board using nested loops}
```

def main():
canvas = Canvas(260, 260)
is_black = True
x0 = 10
y0 = 10
for i in range(NUM_ROWS):
for j in range(NUM_COLS):
x = x0 + j * SQUARE_SIZE
y = y0 + i * SQUARE_SIZE
is_black = (i + j) % 2 == 0 is_black = False
draw_square(canvas, x, y, is_black)

```
    canvas.mainloop()


\section*{Drawing checker board using nested loops}
```

def main():
canvas = Canvas(260, 260)
is_black = True
x0 = 10
y0 = 10
for i in range(NUM_ROWS):
for j in range(NUM_COLS):
x = x0 + j * SQUARE_SIZE
y = y0 + i * SQUARE_SIZE
is_black = (i + j) % 2 == 0 is_black = False
draw_square(canvas, x, y, is_black)

```
    canvas.mainloop()

\section*{Rest of this morning}

\section*{Day 6: Loops and Animation}

\section*{Morning Project [here]}


Print Indices
Quickstart
SL Notes

Optical Illusion
Project
SL Notes

> For Loops```

