
1

CS Bridge, Lecture 4
Variables and Expressions

Today’s
questions

How do computers conduct tasks
we ask for?

How do computers store
information (data) using code?

Once we store that information, how
do we use it?

Today’s
topics

1. Welcome to Python
Input, output, process

2. Variables
 Assignment and retrieval
 Types

3. Using variables
 In expressions

Good bye Karel, I’ll see you in my dreams

Thanks for teaching me for, while, if

Welcome to Python

Guido van Rossum
(Creator of Python)

Welcome to Python

https://en.wikipedia.org/wiki/Monty_Python

https://en.wikipedia.org/wiki/Monty_Python

• Python must be installed and configured
prior to use

• One of the items installed is the Python interpreter
• Python interpreter can be used in two modes:

• Interactive mode: enter statements on keyboard
• Script mode: save statements in Python script

Using Python

• When you start Python in interactive mode, you
will see a prompt

• Indicates the interpreter is waiting for a Python statement
to be typed

• Prompt reappears after previous statement is executed
• Error message displayed If you incorrectly type a

statement
• Good way to learn new parts of Python

Interactive Mode in Python

Interactive Mode in Python

• Statements entered in interactive mode are
not saved as a program

• To have a program use script mode
• Save a set of Python statements in a file
• The filename should have the .py extension
• To run the file, or script, type
 python filename
 at the operating system command line

Writing and Running in Script Mode

Writing and Running in Script Mode

How do computer program typically consists of?

• Typically, computer performs three-step process
• Receive input

• Input: any data that the program receives while it is running
• Perform some process on the input

• Example: mathematical calculation
• Produce output

Input, Processing and Output

How do computers output?
Any idea?

print function

 
 print("This program adds two numbers.")  

• print command prints text to the terminal
• Text printed is between double quotes ("text")

– Can also be between single quotes ('text')
– Choice of quotes depends on text you are printing

• Double quotes when text contains single quotes
print("no, you didn't")➔ no, you didn't

• Single quotes when text contains double quotes
print('say "hi" Karel')➔ say "hi" Karel

Our First Python Program

"""  
File: helloworld.py  

This is our first python program. It is customary to  
have a programmer's first program write "hello world"  
(inspired by the first program in Brian Kernighan and  
Dennis Ritchie's classic book, 'The C Programming Language.')  
"""
 
 
def main():  
 print("hello, world!")  
 
 
This provided line is required at the end of a Python
file to call the main() function.  
if __name__ == '__main__':  
 main() # little bit different than in Karel

Our First Python Program

Our First Python Program

This is on a PC.
On Macs: python3 helloworld.py

Our First Python Program

How do computers get input (data)?

How do computers store information (data)?

Your computer has memory!

● Information is stored in your computer’s memory (RAM)

How do computers store information (data) in code?

How do computers store information (data) in code?

Variables!

variable
A way for code to store information by

associating a value with a name

Definition

Variable

variable
A way for code to store information by

associating a value with a name

Definition
Think of them as
labels for containers!

Variable

● When you store information in Python, it becomes a Python object
○ Objects come in different sizes and types (more on types later)

Suitcase Analogy

● When you store information in Python, it becomes a Python object
○ Objects come in different sizes and types (more on types later)

Python
objects are
stored on
RAM

Suitcase Analogy

● When you store information in Python, it becomes a Python object
○ Objects come in different sizes and types (more on types later)

● You can think about a Python object as a suitcase stored in your
computer’s memory, taking up different amounts of RAM depending on
what you’re storing.

Suitcase Analogy

● You can think about a Python object as a suitcase stored in your
computer’s memory.

Suitcase Analogy

● A variable is a luggage tag for your suitcase that gives it a name!

name

Suitcase Analogy

• Variable: name that represents a value stored in the
computer memory

• Used to access and manipulate data stored in memory
• A variable references the value it represents

• Assignment statement: used to create a variable and
make it reference data

• General format is variable = expression
• Example: age = 29
• Assignment operator: the equal sign (=)

Variable

• In assignment statement, variable receiving
value must be on left side

• You can only use a variable if a value is
assigned to it

• my_age = 18

Variable

• Rules for naming variables in Python:
• Variable name cannot be a Python key word
• Variable name cannot contain spaces
• First character must be a letter or an underscore
• After first character may use letters, digits, or

underscores
• Variable names are case sensitive

• Variable name should reflect its use
• x = 10 versus my_grade = 10

Variable Naming Rules

while = 5

my age = 17

1x = 5.2

An example

Suppose you’re writing a program that keeps track of the flowers in your
garden:

A Variable Example

Suppose you’re writing a program that keeps track of the flowers in your
garden:

num_flowers = 5

A Variable Example

Suppose you’re writing a program that keeps track of the flowers in your
garden:

num_flowers = 5 num_flowers 5

A Variable Example

Suppose you’re writing a program that keeps track of the flowers in your
garden:

num_flowers = 5 num_flowers

variable assignment
The process of associating a name with a value (use the =)

5
Definition

A Variable Example

Suppose you’re writing a program that keeps track of the flowers in your
garden:

num_flowers = 5 num_flowers

variable assignment
The process of associating a name with a value (use the =)

5
i.e. attaching it to the bagDefinition

A Variable Example

Suppose you’re writing a program that keeps track of the flowers in your
garden:

num_flowers = 5 num_flowers 5
variable’s

name

A Variable Example

Suppose you’re writing a program that keeps track of the flowers in your
garden:

num_flowers = 5 num_flowers 5

variable’s
value

A Variable Example

Suppose you’re writing a program that keeps track of the flowers in your
garden:

num_flowers = 5 num_flowers 5

A Variable Example

Suppose you’re writing a program that keeps track of the flowers in your
garden:

num_flowers = 5
 num_picked = 2

num_flowers 5
num_picked 2

A Variable Example

Suppose you’re writing a program that keeps track of the flowers in your
garden:

num_flowers = 5
 num_picked = 2
 num_flowers = num_flowers – num_picked

A Variable Example

Suppose you’re writing a program that keeps track of the flowers in your
garden:

num_flowers = 5
 num_picked = 2
 num_flowers = num_flowers – num_picked

A Variable Example

Suppose you’re writing a program that keeps track of the flowers in your
garden:

 num_flowers = 5
 num_picked = 2
 num_flowers = num_flowers – num_picked

num_flowers

num_picked 2
variable

assignment!

5

A Variable Example

Suppose you’re writing a program that keeps track of the flowers in your
garden:

 num_flowers = 5
 num_picked = 2
 num_flowers = num_flowers – num_picked

num_flowers

num_picked 2
The right side of the equals sign

always gets evaluated first.

5

A Variable Example

Suppose you’re writing a program that keeps track of the flowers in your
garden:

 num_flowers = 5
 num_picked = 2
 num_flowers = num_flowers – num_picked

num_flowers

num_picked 2variable
retrieval!

5

A Variable Example

Suppose you’re writing a program that keeps track of the flowers in your
garden:

 num_flowers = 5
 num_picked = 2
 num_flowers = num_flowers – num_picked

num_flowers

num_picked 2

5

variable retrieval
The process of getting the value associated with a name

Definition

A Variable Example

Suppose you’re writing a program that keeps track of the flowers in your
garden:

 num_flowers = 5
 num_picked = 2
 num_flowers = num_flowers – num_picked

num_flowers

num_picked 2
The right side of the equals sign

always gets evaluated first.

5

A Variable Example

Suppose you’re writing a program that keeps track of the flowers in your
garden:

 num_flowers = 5
 num_picked = 2
 num_flowers = num_flowers – num_picked

num_flowers

num_picked 2
We get the values using variable retrieval
(i.e. checking what suitcase is attached).

55 2

A Variable Example

Suppose you’re writing a program that keeps track of the flowers in your
garden:

 num_flowers = 5
 num_picked = 2
 num_flowers = num_flowers – num_picked

num_flowers

num_picked 2
Then we can evaluate the right
hand side of the assignment.

55 2

A Variable Example

Suppose you’re writing a program that keeps track of the flowers in your
garden:

 num_flowers = 5
 num_picked = 2
 num_flowers = num_flowers – num_picked

num_flowers

num_picked 2
Then we can evaluate the right
hand side of the assignment.

55 2

3

A Variable Example

Suppose you’re writing a program that keeps track of the flowers in your
garden:

 num_flowers = 5
 num_picked = 2
 num_flowers =

num_flowers

num_picked 2
The right side of the equals sign

always gets evaluated first.

3

A Variable Example

Suppose you’re writing a program that keeps track of the flowers in your
garden:

 num_flowers = 5
 num_picked = 2
 num_flowers =

num_flowers

num_picked 2
This is a new Python object!

3

3

A Variable Example

Suppose you’re writing a program that keeps track of the flowers in your
garden:

 num_flowers = 5
 num_picked = 2
 num_flowers =

num_flowers

num_picked 2
Python handles all the baggage for you when you

use variables.

3

3

A Variable Example

How do computer get user input?

input function

 
 num1 = input("Enter first number: ")  

• input command gets text input from the user
• Prints text specified in double/single quotes

– Then waits for user input
– Here, user input from input is put in a variable (num1)
– The user input is considered text, even if user entered a

number

• We'll talk more about input function later

Data Types

The suitcase analogy

● When you store information in Python, it becomes a Python object
○ Objects come in different sizes and types

● You can think about a Python object as a suitcase stored in your
computer’s memory.

● A variable is a luggage tag for your
suitcase that gives it a name!

name

The suitcase analogy

● When you store information in Python, it becomes a Python object
○ Objects come in different sizes and types

name

The suitcase analogy

● When you store information in Python, it becomes a Python object
○ Objects come in different sizes and types

num_flowers 5

num_flowers = 5

The suitcase analogy

● When you store information in Python, it becomes a Python object
○ Objects come in different sizes and types

num_flowers 5
5 is an integer

num_flowers = 5

The suitcase analogy

● When you store information in Python, it becomes a Python object
○ Objects come in different sizes and types

num_flowers 5in
t

num_flowers = 5

5 is an integer

The suitcase analogy

● When you store information in Python, it becomes a Python object
○ Objects come in different sizes and types

num_flowers 5.0

5.0 is a float 
(has decimals)

flo
at

num_flowers = 5.0

All Python objects have a type!
● Python automatically figures out the type based on the value

○ Variables are “dynamically-typed”: you don’t specify the type of
the Python object they point to

Types

○ Integers - numbers with no decimals

num_flowers = 5
○ Floats - numbers with decimals

fraction = 0.2
○ Booleans - true or false

is_raining_today = True
○ Strings - collection of characters

myName = ‘Baris’

Types
All Python objects have a type!

Suppose you’re programming for a doctor’s office...

What type would you use to store each of the following?

Types

Think/Share

Suppose you’re programming for a doctor’s office...

What type would you use to store each of the following?

● The patient’s weight
● The number of whole days since the patient’s last visit
● The patient’s temperature
● If the patient has had their flu shot
● The patient’s number of children

Types

Suppose you’re programming for a doctor’s office...

What type would you use to store each of the following?

● The patient’s weight → float
● The number of whole days since the patient’s last visit
● The patient’s temperature
● If the patient has had their flu shot
● The patient’s number of children

Types

Suppose you’re programming for a doctor’s office...

What type would you use to store each of the following?

● The patient’s weight → float
● The number of days since the patient’s last visit → integer
● The patient’s temperature
● If the patient has had their flu shot
● The patient’s number of children

Types

Suppose you’re programming for a doctor’s office...

What type would you use to store each of the following?

● The patient’s weight → float
● The number of whole days since the patient’s last visit → integer
● The patient’s temperature → float
● If the patient has had their flu shot
● The patient’s number of children

Types

Suppose you’re programming for a doctor’s office...

What type would you use to store each of the following?

● The patient’s weight → float
● The number of whole days since the patient’s last visit → integer
● The patient’s temperature → float
● If the patient has had their flu shot → boolean
● The patient’s number of children

Types

Suppose you’re programming for a doctor’s office...

What type would you use to store each of the following?

● The patient’s weight → float
● The number of whole days since the patient’s last visit → integer
● The patient’s temperature → float
● If the patient has had their flu shot → boolean
● The patient’s number of children → integer

Types

Explicit Type Conversion

• Use float(value) to create new real-valued number
float(num1) => 5.0 (float)

– Note that num1 is not changed. We created a new value.
num1 + float(num2) => 7.0 (float)

num1 + num2 => 7 (int)

• Use int(value) to create a new integer-valued number
(truncating anything after decimal)

int(num3) => 1 (int)

int(-2.7) => -2 (int)

 num1 = 5  
 num2 = 2
 num3 = 1.9

Explicit Type Conversion

• Use str(value) to create new text out number
str(num1) => ‘5’ (String)
str(num2) => ‘2’ (String)

str(num3) => ‘1.9’ (String)

 num1 = 5  
 num2 = 2
 num3 = 1.9

Ready for another example?

Another Program
def main():  
 print("This program adds two numbers.")  

Recall, Our Program

This program adds two numbers.

• print command is displaying a string

def main():  
 print("This program adds two numbers.")  

Recall, Our Program
def main():  
 print("This program adds two numbers.")  
 num1 = input("Enter first number: ")  

This program adds two numbers.
Enter first number: 9

"9"num1

• input command gives you back a string
– Even if the user types in a number

Show Me The Luggage!
• input command gives you back a string

num1 = input("Enter first number: ")

– We create an integer version of num1
 num1 = int(num1)
– Create a new suitcase that has int version of num1
– Then assign the tag num1 to that piece of luggage
num1 = int(num1)

num1 "9" st
rin

g

num1 9 in
t

Recall, Our Program
def main():  
 print("This program adds two numbers.")  
 num1 = input("Enter first number: ")  
 num1 = int(num1)  

This program adds two numbers.
Enter first number: 9

• Create int version of string and assign it back to num1

"9"num1

Recall, Our Program
def main():  
 print("This program adds two numbers.")  
 num1 = input("Enter first number: ")  
 num1 = int(num1)  
 num2 = input("Enter second number: “)

This program adds two numbers.
Enter first number: 9
Enter second number:

9num1 "17"num2

Recall, Our Program
def main():  
 print("This program adds two numbers.")  
 num1 = input("Enter first number: ")  
 num1 = int(num1)  
 num2 = input("Enter second number: ")  
 num2 = int(num2)  

This program adds two numbers.
Enter first number: 9
Enter second number: 17

9num1 17num2

Recall, Our Program
def main():  
 print("This program adds two numbers.")  
 num1 = input("Enter first number: ")  
 num1 = int(num1)  
 num2 = input("Enter second number: ")  
 num2 = int(num2)  
 total = num1 + num2  

This program adds two numbers.
Enter first number: 9
Enter second number: 17

26total9num1 17num2

Recall, Our Program
def main():  
 print("This program adds two numbers.")  
 num1 = input("Enter first number: ")  
 num1 = int(num1)  
 num2 = input("Enter second number: ")  
 num2 = int(num2)  
 total = num1 + num2  
 print("The total is " + str(total) + “.")

This program adds two numbers.
Enter first number: 9
Enter second number: 17
The total is 26.

26total9num1 17num2

What's Going on With print
• Adding strings in print command

print("The total is " + str(total) + ".")

• The + operator concatenates strings together
str1 = "hi"
str2 = " "
str3 = "there"
str4 = str1 + str2 + str3

• total is integer, so we need to create a string version
 str(total)
– String version of total is a new value that is concatenated to

produce final string that is printed
– Original variable total is still an int

Recall, Our Program
def main():  
 print("This program adds two numbers.")  
 num1 = input("Enter first number: ")  
 num1 = int(num1)  
 num2 = input("Enter second number: ")  
 num2 = int(num2)  
 total = num1 + num2  
 print("The total is " + str(total) +
".")

This program adds two numbers.
Enter first number: 9
Enter second number: 17
The total is 26.

26total9num1 17num2

Side note about print
• You can print numbers by themselves directly

– Only need to create string version of numbers when printing
other text (strings) with them

10
3.5
x = 10

def main():  
 x = 10  
 y = 3.5  
 print(x)  
 print(y)  
 print("x = " + str(x))

You just wrote your first
Python program and learned

about variables!

How do we process the information that we’ve stored?

Expressions

Recall: expressions

● In Karel, we only saw “boolean expressions” that evaluate to true/false

● In Python, expressions can evaluate to any type!

● The computer evaluates expressions to a single value

● We use operators to combine literals and/or variables into expressions

Recall: expressions

● In Karel, we only saw “boolean expressions” that evaluate to true/false

● In Python, expressions can evaluate to any type!

● The computer evaluates expressions to a single value.

● We use operators to combine literals and/or variables into expressions

Literals are Python objects 
written directly in code, e.g. the 5 in
num_flowers = 5

• Math expression: performs calculation and gives a
value

• Math operator: built-in tool for performing calculation
• Operands: values surrounding operator

• Variables can be used as operands
• Resulting value typically assigned to variable

Performing Calculations

Arithmetic operators
* Multiplication

/ Division

// Integer division

% Modulus (remainder)

+ Addition

- Subtraction

** Exponentiation

• Two types of division:
• / operator performs floating point division
• // operator performs integer division

• Positive results truncated, negative rounded away
from zero

Performing Calculations

Arithmetic Operators
 num1 = 5  
 num2 = 2

• Operations on numerical types (int and float)
• Operators

+ "addition" Ex.: num3 = num1 + num2

- "subtraction" Ex.: num3 = num1 - num2

* "multiplication" Ex.: num3 = num1 * num2

/ "division" Ex.: num3 = num1 / num2

// "integer division" Ex.: num3 = num1 // num2

% "remainder" Ex.: num3 = num1 % num2

** "exponentiation" Ex.: num3 = num1 ** num2

- "negation" (unary) Ex.: num3 = -num1

num3

7
3
10
2.5
2
1
25
-5

Arithmetic operators

* Multiplication

/ Division

// Integer division

% Modulus (remainder)

+ Addition

- Subtraction

Operator Precedence

() 1

*, /, //, % 2

+, - 3

Performing Calculations

Arithmetic operators

* Multiplication

/ Division

// Integer division

% Modulus (remainder)

+ Addition

- Subtraction

Operator Precedence

() 1

*, /, //, % 2

+, - 3

This is your “order of
operations” for

Python!

Performing Calculations

Arithmetic operators

* Multiplication

/ Division

// Integer division

% Modulus (remainder)

+ Addition

- Subtraction

Operator Precedence

() 1

*, /, //, % 2

+, - 3

Ties within rows are
broken by going
from left to right

Performing Calculations

Let’s do some examples!

● 4 + 2 * 3
● 5 + 1 / 2 - 4
● 15 / 2.0 + 6
● 5 + 1 / (2 - 4)
● 5 + 1 // (2 - 4)
● 1 * 2 + 3 * 5 % 4

Let’s all think about it

Operator Precedence

() 1

*, /, //, % 2

+, - 3

Performing Calculations

Let’s do some examples!

● 4 + 2 * 3
● 5 + 1 / 2 - 4
● 15 / 2.0 + 6
● 5 + 1 / (2 - 4)
● 5 + 1 // (2 - 4)
● 1 * 2 + 3 * 5 % 4 [demo]

Operator Precedence

() 1

*, /, //, % 2

+, - 3

Performing Calculations

Let’s do some examples!

● 4 + 2 * 3 → 10
● 5 + 1 / 2 - 4 → 1.5
● 15 / 2.0 + 6 → 13.5
● 5 + 1 / (2 - 4) → 4.5
● 5 + 1 // (2 - 4) → 4
● 1 * 2 + 3 * 5 % 4 → 5 [demo]

Operator Precedence

() 1

*, /, //, % 2

+, - 3

Performing Calculations

Let’s do some examples!

● 4 + 2 * 3 → 10
● 5 + 1 / 2 - 4 → 1.5
● 15 / 2.0 + 6 → 13.5
● 5 + 1 / (2 - 4) → 4.5
● 5 + 1 // (2 - 4) → 4
● 1 * 2 + 3 * 5 % 4 → 5

NOTE: Any of the
literals can also be
replaced with variables
that are associated with
the same value

Performing Calculations

Let’s do some examples!

● 4 + 2 * 3 → 10
● 5 + 1 / 2 - 4 → 1.5
● 15 / 2.0 + 6 → 13.5
● 5 + 1 / (2 - 4) → 4.5
● 5 + 1 // (2 - 4) → 4
● 1 * 2 + 3 * 5 % 4 → 5

For example:

x = 2
4 + x * 3

This evaluates to 10,
just like our first
example expression!

Performing Calculations

Expression Shorthands

num1 = num1 + 1 same as num1 += 1

num2 = num2 - 4 same as num2 -= 4

num3 = num3 * 2 same as num3 *= 2

num1 = num1 / 2 same as num1 /= 2

• Generally:
variable = variable operator (expression)
is same as:
variable operator= expression

 num1 = 5  
 num2 = 2
 num3 = 1.9

Implicit Type Conversion

• Operations on two ints (except /) that would result in an
integer value are of type int

num1 + 7 => 12 (int)

– Dividing (/) two ints results in a float, even if result is a round number (Ex.:
6 / 2 = 3.0)

• If either (or both) of operands are float, the result is a float
num3 + 1 => 2.9 (float)

• Exponentiation depends on the result:
num2 ** 3 => 8 (int)
2 ** -1 => 0.5 (float)

 num1 = 5  
 num2 = 2
 num3 = 1.9

How should we store information if it is known and never changes?

How should we store information if it is known and never changes?

Constants!

Constants are like variables that don’t change
● Constants give descriptive names to literals

constants
Use constants with descriptive names instead of
literals directly in your code.

Style note

Constants

d = 299792458 * 3 SPEED_OF_LIGHT = 299792458
d = SPEED_OF_LIGHT * 3

Constants are like variables that don’t change

● Constants give descriptive names to literals

● Use all capital letters and snake_case when naming constants

constant names
Use all capital letters and snake_case, for
example MY_CONSTANT = 500.

Style note

Constants

Constants are like variables that don’t change

● Constants give descriptive names to literals

● Use all capital letters and snake_case when naming constants

● Constants are usually assigned outside functions and at the top of your
program file (underneath the imports)

Constants

Example of Using Constants

"""  
File: constants.py  

An example program with constants  
"""  
 
INCHES_IN_FOOT = 12  
 
def main():  
 feet = float(input("Enter number of feet: "))  
 inches = feet * INCHES_IN_FOOT  
 print("That is " + str(inches) + " inches!")  
 
This provided line is required at the end of a Python file  
to call the main() function.  
if __name__ == '__main__':  
 main()

Implicit Type Conversion

• Operations on two ints (except /) that would result in an
integer value are of type int

num1 + 7 = 12 (int)

– Dividing (/) two ints results in a float, even if result is a round number (Ex.:
6 / 2 = 3.0)

• If either (or both) of operands are float, the result is a float
num3 + 1 = 2.9 (float)

• Exponentiation depends on the result:
num2 ** 3 = 8 (int)
2 ** -1 = 0.5 (float)

 num1 = 5  
 num2 = 2
 num3 = 1.9

