
1

CS Bridge, Lecture 3
More Karel Control Flow

2

1. Code using conditions
2. Trace programs that use loops and conditions

3. Decomposition and top-down design

Learning Goals

3

Lecture Plan
•Review: Karel and Control Flow
• If/Else Statements
•Decomposition and Top-Down Design
•Practice: Hurdle Jumper

4

Lecture Plan
•Review: Karel and Control Flow
• If/Else Statements
•Decomposition and Top-Down Design
•Practice: Hurdle Jumper

5

A quick question!
Which code will result in the following world?

def main():
while front_is_clear():

move()
put_beeper()

def main():
while front_is_clear():

move()
put_beeper()

(B)(A)

6

Indentation
Karel is very picky about indentation.

Make sure to indent a code block 1 level further when you:
- Define a new Karel command
- Write a for loop
- Write a while loop

You may nest these. Make sure you keep track of your indentation!

If you don’t have correct indentation, your program may not work!

7

Indentation

for i in range(count):
statements # note indenting

def my_command():
for i in range(3):

turn_left()
put_beeper()

Karel is very picky about indentation.

8

Indentation

def my_command():
for i in range(3):

turn_left()
put_beeper()

def my_command():
for i in range(3):

turn_left()
put_beeper()

Karel is very picky about indentation.

These two blocks of code
do different things! What

do they do?

9

Control Flow
Control Flow lets us control the “flow” of our Karel program.
• Example: repeat something 5 times
• Example: repeat something until Karel is blocked

10

Control Flow: For Loops
Repeats the statements in the body count times:

for i in range(count):
statement
statement
...

11

Control Flow: While Loops
Repeats the statements in the body until condition is no longer true.

while condition:
statement
statement
...

Each time, Karel executes all statements, and then checks the
condition.

12

Control Flow: While Loops
Repeats the statements in the body until condition is no longer true.

while front_is_clear():
move()
put_beeper()

Each time, Karel executes all statements, and then checks the
condition.

Even if Karel’s front becomes
blocked after this move, it will
still put a beeper, because the
condition is not checked until

after all the lines are executed.

13

Possible Questions

This is taken from the Karel Reference.

Test Opposite What it checks
front_is_clear() front_is_blocked() Is there a wall in front of Karel?

left_is_clear() left_is_blocked() Is there a wall to Karel’s left?
right_is_clear() right_is_blocked() Is there a wall to Karel’s right?

beepers_present() no_beepers_present() Are there beepers on this
corner?

facing_north() not_facing_north() Is Karel facing north?

facing_east() not_facing_east() Is Karel facing east?

facing_south() not_facing_south() Is Karel facing south?

facing_west() not_facing_west() Is Karel facing west?

https://compedu.stanford.edu/karel-reader/docs/python/en/reference.html

14

Loops Overview

I want Karel to repeat
some commands!

for loop while loop

Know how many
times

Don’t know how
many times

15

Fencepost

I want Karel to put down a row of beepers until it reaches a wall.
How do I do this?

put_beeper()
move()
put_beeper()
move()
...
put_beeper()

We must put N

beepers but

move N-1 times!

16

Fencepost Problem

8 fence segments, but 9 posts!

17

Fencepost Structure
The fencepost structure is useful when you want to loop a set of statements but do
one part of that set 1 additional time.
put_beeper() # post
while front_is_clear():

move() # fence
put_beeper() # post

or...
while front_is_clear():

put_beeper() # post
move() # fence

put_beeper() # post

18

Lecture Plan
•Review: Karel and Control Flow
• If/Else Statements
•Decomposition and Top-Down Design
•Practice: Hurdle Jumper

19

If Statements
I want to make Karel clean up all beepers in front of it until it reaches
a wall. How do I do this?

20

If Statements
Will this work?

while front_is_clear():
move()
pick_beeper()

No. This may crash, because Karel cannot pick up beepers if there
aren’t any. We don’t always want Karel to pick up beepers; just when
there is a beeper to pick up.

21

If Statements

22

If Statements
Instead, use an if statement:

if condition:
statement
statement
...

Runs the statements in the body once if condition is true. These are
the same conditions you can use for while loops!

23

If Statements
Now we can say:

while front_is_clear():
move()
if beepers_present():

pick_beeper()

Karel won’t crash because it will only pick up a beeper if there is one.

24

If Statements and Indentation

if condition:
statements # note indenting

def safe_pick_up():
if beepers_present():

pick_beeper() # note indenting

25

If/Else Statements
What if we want to do one thing if some condition is true, and
another otherwise? We can add an else statement:

if condition:
statement
statement
...

else:
statement
statement
...

This will run the first group of
statements if condition is true;
otherwise, it runs the second
group of statements.

26

If/Else Statements
What does this code do?

def main():
if beepers_present():

pick_beeper()
else:

put_beeper()

27

If/Else Statements and Indentation

if condition:
statements # note indenting

else:
statements # note indenting

def invert_beepers():
if beepers_present():

pick_beeper() # note indenting
else:

put_beeper() # note indenting

28

Karel and Control Flow
Congratulations! You’ve learned all of control flow in Karel.

Control Flow lets us control the “flow” of our Karel program. For
example, repeat something more than once, or only do something in
certain cases.

Want to repeat something? Use a for or while loop.
- for if we know how many times
- while if we don’t know how many times

Want to conditionally do something? Use if (with an optional else)

29

Lecture Plan
•Review: Karel and Control Flow
• If/Else Statements
•Decomposition and Top-Down Design
•Practice: Hurdle Jumper

30

Decomposition
• Breaking down problems into smaller, more approachable sub-problems (e.g.

our own Karel commands)

31

Top-Down Design
• Start from a large task and break it up into smaller pieces
• Ok to write your program in terms of commands that don’t exist yet
• Goal: make our programs easily readable by humans
• Commenting
• Decomposition

32

Decomposition and Top-Down Design
• E.g. You wake up and and trying to plan your day

Approach 1
1. Get left foot out of bed
2. Get right foot out of bed
3. Stand up
4. Move to washroom
5. Grab brush
6. Apply toothpaste
7. Brush teeth
8. Get face wash
9. Scrub on face
10.Exit washroom
11.Go to kitchen
12.Crack eggs
13.…

33

Decomposition and Top-Down Design
• E.g. You wake up and and trying to plan your day

Approach 2
1. Get out of bed
2. Wash up
3. Eat breakfast

Approach 1
1. Get left foot out of bed
2. Get right foot out of bed
3. Stand up
4. Move to washroom
5. Grab brush
6. Apply toothpaste
7. Brush teeth
8. Get face wash
9. Scrub on face
10.Exit washroom
11.Go to kitchen
12.Crack eggs
13.…

34

Decomposition and Top-Down Design
• E.g. You wake up and and trying to plan your day

Approach 2
1. Get out of bed

1. Exit bed
2. Stand up

2. Wash up
3. Eat breakfast

Approach 1
1. Get left foot out of bed
2. Get right foot out of bed
3. Stand up
4. Move to washroom
5. Grab brush
6. Apply toothpaste
7. Brush teeth
8. Get face wash
9. Scrub on face
10.Exit washroom
11.Go to kitchen
12.Crack eggs
13.…

35

Decomposition and Top-Down Design
• E.g. You wake up and and trying to plan your day

Approach 2
1. Get out of bed

1. Exit bed
2. Stand up

2. Wash up
1. Brush teeth
2. Wash face

3. Eat breakfast

Approach 1
1. Get left foot out of bed
2. Get right foot out of bed
3. Stand up
4. Move to washroom
5. Grab brush
6. Apply toothpaste
7. Brush teeth
8. Get face wash
9. Scrub on face
10.Exit washroom
11.Go to kitchen
12.Crack eggs
13.…

36

Decomposition and Top-Down Design
• E.g. You wake up and and trying to plan your day

Approach 2
1. Get out of bed

1. Exit bed
2. Stand up

2. Wash up
1. Brush teeth
2. Wash face

3. Eat breakfast
1. Make eggs
2. Pour juice
3. Eat

Approach 1
1. Get left foot out of bed
2. Get right foot out of bed
3. Stand up
4. Move to washroom
5. Grab brush
6. Apply toothpaste
7. Brush teeth
8. Get face wash
9. Scrub on face
10.Exit washroom
11.Go to kitchen
12.Crack eggs
13.…

37

Decomposition and Top-Down Design
• Breaking down problems into smaller, more approachable sub-problems (e.g.

our own Karel commands)
• Each piece should solve one problem/task (< ~ 20 lines of code)
• Descriptively-named
• Well-commented!

• Problems should be solved top-down.

38

Commenting with Pre/Post-Conditions
Precondition: something you assume is true at the start of a function or code block
Postcondition: something you promise is true at the end of a function or code block
Pre/post-conditions should be documented using comments.

def jump_hurdle():
"""
Karel jumps over one hurdle of arbitrary height.
Pre-condition: Karel is facing east next to a hurdle.
Post-condition: Karel is facing east at the bottom of

the other side of the hurdle.
"""
ascend_hurdle()
move()
descend_hurdle()

39

Lecture Plan
•Review: Karel and Control Flow
• If/Else Statements
•Decomposition and Top-Down Design
•Practice: Hurdle Jumper

40

Hurdle Jumper
Karel is in the Olympics! We want
to write a Karel program that hops
hurdles.
• Karel starts at (1,1) facing East and

should end up at the end of row 1
facing east.

• The world has 9 columns.
• There are an unknown number of

”hurdles” (walls) of varying heights
that Karel must ascend and descend
to get to the other side.

41

Hurdle Jumper

Demo

42

Lecture Recap
•Review: Karel and Control Flow
• If/Else Statements
•Decomposition and Top-Down Design
•Practice: Hurdle Jumper

43

Karel Resources

44

Rest Of Today
• Quickstart: Implement a program

where Karel draws stripes with
Beepers.
• Section: Implement a program where

Karel builds Hospitals
• Project: Write a program where Karel

paints any world randomly with green
and blue squares.

45

What’s Next?
• Time for your section’s quickstart time!
• Check your section’s Ed group for more information

