
CS Bridge, Lecture 16
Dictionaries

Today’s
questions

How can I organize my data so it’s

easier to use?

How can I organize my data so it’s easier to use?

Think/Share:

Store names of habitat animals and
their corresponding diet

elephant bear otter platypus

clams grass shrimp berries

Task - Relating data with each other

['elephant', ‘bear', ‘otter', ‘platypus']

['grass', ‘berries', ‘clams’, ‘shrimp']

Task - Relating data with each other

['elephant', ‘bear', ‘otter', ‘platypus']

['grass', ‘berries', ‘clams’, ‘shrimp']

These pieces of information are
linked!

['elephant', ‘bear', ‘otter', ‘platypus']

['grass', ‘berries', ‘clams’, ‘shrimp']

These pieces of information are
linked!

Can we store them so they’re
associated with each other?

Task - Relating data with each other

Dictionaries!

Dictionary
A container data type that

maps “keys” to their
associated “values”.

Definition

Anatomy of a Dictionary

name_of_dic = {}

name_of_dic = {'elephant': 'grass', 'bear': ‘berries',

'otter': ‘clams’, 'platypus': ‘shrimp'}

Anatomy of a Dictionary

name_of_dic = {'elephant': 'grass', 'bear': ‘berries',

'otter': ‘clams’, 'platypus': ‘shrimp'}

This is a dictionary literal

Anatomy of a Dictionary

name_of_dic = {'elephant': 'grass', 'bear': ‘berries',

'otter': ‘clams’, 'platypus': ‘shrimp'}

It is easier to visualize it this way:

‘elephant'

‘bear'

‘otter'

‘platypus'

‘grass’

‘berries'

‘clams’

shrimp’

dict

keys values

Anatomy of a Dictionary

Each key can store one value

‘elephant'

‘bear'

‘otter'

‘platypus'

‘grass’

‘berries'

‘clams'

‘shrimp’

dict

keys values

Anatomy of a Dictionary

Each key can store one value

‘elephant'

‘bear'

‘otter'

‘platypus'

‘grass’

‘berries'

‘clams'

‘shrimp’

dict

keys values
>>> d[‘elephant’]

Anatomy of a Dictionary - Get/Set

‘elephant'

‘bear'

‘otter'

‘platypus'

‘grass’

‘berries'

‘clams'

‘shrimp’

dict

keys values
>>> d[‘elephant’]

This operation is
called ‘‘get’’

Anatomy of a Dictionary - Get/Set

‘elephant'

‘bear'

‘otter'

‘platypus'

‘grass’

‘berries'

‘clams'

‘shrimp’

dict

keys values
>>> d[‘elephant’]

This operation is
called ‘‘get’’

Anatomy of a Dictionary - Get/Set

‘elephant'

‘bear'

‘otter'

‘platypus'

‘grass’

‘berries'

‘clams'

‘shrimp’

dict

keys values
>>> d[‘elephant’]

‘grass’

Anatomy of a Dictionary - Get/Set

‘elephant'

‘bear'

‘otter'

‘platypus'

‘grass’

‘berries'

‘clams'

‘shrimp’

dict

keys values
>>> d[‘elephant’]

‘grass’

Anatomy of a Dictionary - Get/Set

‘elephant'

‘bear'

‘otter'

‘platypus'

‘grass’

‘berries'

‘clams'

‘shrimp’

dict

keys values
>>> d[‘elephant’]

‘grass’

>>> d[‘elephant’] = ‘leaves’

This operation is
called ‘‘set’’

Anatomy of a Dictionary - Get/Set

‘elephant'

‘bear'

‘otter'

‘platypus'

‘leaves’

‘berries'

‘clams'

‘shrimp’

dict

keys values
>>> d[‘elephant’]

‘grass’

>>> d[‘elephant’] = ‘leaves’

This operation is
called ‘‘set’’

Anatomy of a Dictionary - Get/Set

‘elephant'

‘bear'

‘otter'

‘platypus'

‘leaves’

‘berries'

‘clams'

‘shrimp’

dict

keys values
>>> d[‘elephant’]

‘grass’

>>> d[‘elephant’] = ‘leaves’

>>> d[‘cat’]

Anatomy of a Dictionary - Get/Set

‘elephant'

‘bear'

‘otter'

‘platypus'

‘leaves’

‘berries'

‘clams'

‘shrimp’

dict

keys values
>>> d[‘elephant’]

‘grass’

>>> d[‘elephant’] = ‘leaves’

>>> d[‘cat’] KeyError

Anatomy of a Dictionary - Get/Set

‘elephant'

‘bear'

‘otter'

‘platypus'

‘leaves’

‘berries'

‘clams'

‘shrimp’

dict

keys values
>>> d[‘elephant’]

‘grass’

>>> d[‘elephant’] = ‘leaves’

>>> d[‘cat’] “get” errors if the key is
not in the dict

Dictionary - in

‘elephant'

‘bear'

‘otter'

‘platypus'

‘leaves’

‘berries'

‘clams'

‘shrimp’

dict

keys values
>>>‘elephant’ in d

Dictionary - in

‘elephant'

‘bear'

‘otter'

‘platypus'

‘leaves’

‘berries'

‘clams'

‘shrimp’

dict

keys values
>>>‘elephant’ in d

True

Dictionary - in

‘elephant'

‘bear'

‘otter'

‘platypus'

‘leaves’

‘berries'

‘clams'

‘shrimp’

dict

keys values
>>>‘elephant’ in d

True

>>>‘cat’ not in d

True

Dictionary - in

‘elephant'

‘bear'

‘otter'

‘platypus'

‘leaves’

‘berries'

‘clams'

‘shrimp’

dict

keys values
>>>‘elephant’ in d

True

>>>‘cat’ not in d

True

Common pattern: Check if key is present. If it is, do
something. If it isn’t, do something else.

Building a dictionary

>>> d = {}

Building a dictionary

>>> d = {}

Create an empty dictionary

Building a dictionary

>>> d = {}

>>> d[‘elephant’] = ‘grass’

Building a dictionary

>>> d = {}

>>> d[‘elephant’] = ‘grass’

We can add keys using ‘‘set’’

Building a dictionary

>>> d = {}

>>> d[‘elephant’] = ‘grass’

>>> d We can add keys using ‘‘set’’

Building a dictionary

>>> d = {}

>>> d[‘elephant’] = ‘grass’

>>> d

{‘elephant’: ‘grass'}

We can add keys using ‘‘set’’

Building a dictionary

>>> d = {‘elephant’: ‘grass’}

Types of Dictionaries

● So far, we’ve seen dictionaries mapping from strings to ints

○ This is not the only type of dictionary!

○ You can map from string/int/float to string/int/float...

Think/Share:

Store names of CS lecturers and their
ages

Accessing a Dictionary’s Keys

>>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

Building a dictionary

>>> d = {‘Buket’: 31}

>>> d[‘Buket’] += 2

Building a dictionary

>>> d = {‘Buket’: 31}

>>> d[‘Buket’] += 2

we can get/set on the same line!
(same as d[‘Buket’] = d[‘Buket'] + 2)

Building a dictionary

>>> d = {‘Buket’: 31}

>>> d[‘Buket’] += 2

>>> d[‘Buket’]

{‘Buket’: 33} we can get/set on the same line!
(same as d[‘Buket'] = d[‘Buket'] + 2)

Accessing a Dictionary’s Keys

>>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

>>> d.keys()

Accessing a Dictionary’s Keys

>>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

>>> d.keys()

dict_keys(['Buket', ‘Nick’, 'Baris'])

Iterable collection of all the keys.
Iterable means it can be used in foreach

Accessing a Dictionary’s Keys

>> d = {‘Buket’: 31, 'Nick': 28, 'Baris':35}

>>> list(d.keys())

[‘Buket’, ‘Nick’, 'Baris']

we are using list() to convert d.keys() into a
list

Accessing a Dictionary’s Values

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

Accessing a Dictionary’s Values

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

>>> list(d.values())

Accessing a Dictionary’s Values

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

>>> list(d.values())

we are using list() to convert d.values() into a
list

Accessing a Dictionary’s Values

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

>>> list(d.values())

[31,28,35]

we are using list() to convert d.values() into a
list

Looping over a Dictionary’s Keys

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

Looping over a Dictionary’s Keys

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

>>> for name in d.keys():

Looping over a Dictionary’s Keys

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

>>> for name in d.keys():

... print(name)

Looping over a Dictionary’s Keys

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

>>> for name in d.keys():

... print(name)

Buket

Nick

Baris

Looping over a Dictionary’s Keys

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

>>> for name in d.keys():

... print(name)

we can use foreach on the
dictionary’s keys!

Buket

Nick

Baris

Looping over a Dictionary’s Values

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

Looping over a Dictionary’s Values

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

>>> for age in d.values():

Looping over a Dictionary’s Values

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

>>> for age in d.values():

... print(age)

Looping over a Dictionary’s Values

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

>>> for age in d.values():

... print(age)

31

28

35

Looping over a Dictionary’s Values

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

>>> for age in d.values():

... print(age)

31

28

35 we can use foreach on the
dictionary’s values!

Looping over a Dictionary’s Keys and Values

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

Looping over a Dictionary’s Keys and Values

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

>>> for name, age in d.items():

Looping over a Dictionary’s Keys and Values

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

>>> for name, age in d.items():

items() gives us key,
value pairs

Looping over a Dictionary’s Keys and Values

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

>>> for name, age in d.items():

... print(name, ‘is’, age, ‘years old.’)

items() gives us key,
value pairs

Looping over a Dictionary’s Keys and Values

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35} >>>

for name, age in d.items():

... print(name, ‘is’, age, ‘years old.’)

Buket is 31 years old.

Nick is 28 years old.

Baris is 35 years old.
items() gives us key,
value pairs

Looping over a Dictionary’s Keys and Values

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

>>> for name, age in d.items():

... print(name, ‘is’, age, ‘years old.’)

Buket is 31 years old.

Nick is 28 years old.

Baris is 35 years old.

.

print() will automatically
concatenate args separated by
commas!

Printing with sep=

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

>>> for name, age in d.items():

... print(name, age, sep=‘: ’)

Printing with sep=

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

>>> for name, age in d.items():

... print(name, age, sep=‘: ’)

sep is an optional argument like
end!

Printing with sep=

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

>>> for name, age in d.items():

... print(name, age, sep=‘: ’)

Buket: 34

Nick: 28

Baris: 35 sep is an optional argument like
end!

Printing with sep=

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

>>> for name, age in d.items():

... print(name, age, sep=‘: ’)

Buket: 34

Nick: 28

Baris: 35 the separating string will be
printed between the arguments
you pass into print()

Printing with sep=

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

>>> for name, age in d.items():

... print(name, age, sep=‘: ’)

Buket: 34

Nick: 28

Baris: 35

the default is sep=‘ ’ (insert space)

Getting a Sorted List of Keys

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

Getting a Sorted List of Keys

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

>>> sorted(d.keys())

Getting a Sorted List of Keys

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

>>> sorted(d.keys())

[‘Baris’,‘Buket’, ‘Nick’]

Getting a Sorted List of Keys

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

>>> sorted(d.keys())

[‘Buket’, ‘Nick’, ‘Baris’]

sorted() returns a list in
alphabetical order!

Getting a Sorted List of Keys

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

>>> sorted(d.keys())

[‘Baris’, ‘Buket’, ‘Nick’]

>>> d

{'Buket': 31, 'Nick': 28, 'Baris': 35}

Getting a Sorted List of Keys

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

>>> sorted(d.keys())

[‘Baris’, ‘Buket’, ‘Nick’]

Sorting a Dictionary’s Values

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

Sorting a Dictionary’s Values

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

>>> sorted(d.values())

Sorting a Dictionary’s Values

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

>>> sorted(d.values())

[28, 31, 35]

Sorting a Dictionary’s Values

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

>>> sorted(d.values())

[28, 31, 35]

sorted() returns a list in
numerical order!

Retrieving Min/Max Values

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

Retrieving Min/Max Values

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

>>> min(d.values())

Retrieving Min/Max Values

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

>>> min(d.values())

returns the smallest element!

Retrieving Min/Max Values

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

>>> min(d.values())

28

returns the smallest element!

Retrieving Min/Max Values

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

>>> min(d.values())

28

>>> max(d.values()) returns the smallest element!

Retrieving Min/Max Values

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

>>> min(d.values())

28

>>> max(d.values())

returns the smallest element!

returns the biggest element!

Retrieving Min/Max Values

>> d = {‘Buket’: 31, ‘Nick’: 28, ‘Baris’: 35}

>>> min(d.values())

28

>>> max(d.values())

35

returns the smallest element!

returns the biggest element!

List & dictionary operations

What’s next?

Nested Data Structures

● We can nest data structures!

○ Lists in lists

■ grid/game board

○ Lists in dicts

■ animals to feeding times

○ Dicts in dicts

■ your phone’s contact book

○ ... and so on!

How to organize data

June July August

2018 500 700 600

2019 550 750 700

2020 250 500 400

UNIV199 Introduction to Programming with Python

Ice cream sales

How to organize data

June July August

2018
500

ice[0][0]
700

ice[0][1]
600

ice[0][2]

2019
550

ice[1][0]
750

ice[1][1]
700

ice[1][2]

2020
250

ice[2][0]
500

ice[2][1]
400

ice[2][2]

UNIV199 Introduction to Programming with Python

Ice cream sales

ice = [[500,700,600], [550,750,700], [250,500,400]]

Example: June 2020 ice cream sales is accessed as ice[2][0]

How to organize data

June July August

2018 500 700 600

2019 550 750 700

2020 250 500 400

UNIV199 Introduction to Programming with Python

Ice cream sales

ice = {2018: {'june':500, 'july':700, 'august':600},

2019: {'june':500, 'july':700, 'august':600},

2020: {'june':500, 'july':700, 'august':600}}

Example: June 2020 ice cream sales is accessed as ice[2020]['june']

Think/Share:

Implement a phone book using
dictionaries

