
1

CS Bridge, Lecture 13
Breakout

Breakout

Submission deadline: Friday morning

1972: Pong by Atari

1976

Steve Wozniak

Designer(s)

• Nolan Bushnell

• Steve Bristowhttps://en.wikipedia.org/wiki/Breakout_(video_game)

https://en.wikipedia.org/wiki/Video_game_designer
https://en.wikipedia.org/wiki/Nolan_Bushnell
https://en.wikipedia.org/wiki/Breakout_(video_game)

Bushnell offered the bonus because he disliked how new Atari games required 150 to 170 chips…Jobs had
little specialized knowledge of circuit board design but knew Wozniak was capable of producing designs
with a small number of chips. He convinced Wozniak to work with him, promising to split the fee evenly
between them….Wozniak was the engineer, and Jobs was the breadboarder and tester….The original
deadline was met after Wozniak worked at Atari four nights straight, doing some additional designs while at
his day job at Hewlett-Packard…. Wozniak: "we only got 700 bucks for it” Ref: Wikipedia entry

https://en.wikipedia.org/wiki/Breadboard

Requirements
❖ Goal is to break all bricks
❖ User has 3 turns
❖ Ball in the center start moving towards bottom at

random angle
❖ Ball bounces paddle, right wall and the bricks

Requirements
❖ When hit a brick, the brick disappears
❖ Ball moves down either hitting left wall, paddle or

bottom wall
❖ The turn continues until

❖ The ball hits the lower wall.
❖ NEXT TURN or YOU LOOSE

❖ The last brick is eliminated.
❖ YOU WIN

Big program. Do it in parts

1 2 3

Some suggestions before we start
A task may include parts that look like other tasks:

Bricks in Breakout ~ Checkerboard project
Programming is not patch-work, re-think on the design
The first idea that pops-up may not be the best

This is an individual adventure:
Discuss concepts, ask questions about problems you face
Do not copy-paste someone else’s code

Think about decomposition, write clean code, add comments:
Design on paper, apply several steps of decomposition
Use meaningful function names
Add comments to your code

Part 1 - Creating Bricks
❖ Number, dimensions and spacing of bricks as constants (define

them at the beginning)
❖ Calculate x coordinate of the first column - so that bricks are

centered
❖ Colors of bricks - red, orange, yellow, green and cyan

No need for lists here because we don’t plan accessing and/or modifying parameters of the objects

Part 2 - Add and move ball

❖ Put filled ball at the center of the window
❖ Velocity of the ball - declared as variables (specify a max

speed (constant))
❖ Pick random values for change in x and y
❖ Move the ball using

❖ canvas.move(object, change_x, charge_y)
❖ canvas.moveto(object, new_x, new_y)

❖ Move the ball - Initially - ball heading downwards

Part 2 - Bouncing ball

❖ Animation loop - where ball is moving
❖ Bounce from right, left and top walls
❖ Bottom wall - start in the middle again

❖ When bounced from top wall
❖ Inverse change_y

❖ When bounced from left or right wall
❖ Inverse change_x

❖ Update the canvas

Part 3 - Add Paddle

❖ Define some constants for the dimension and
location of the paddle: width, height, y-offset from
bottom

❖ Create Paddle - filled rectangle at a specific location
❖ Link paddle move with mouse move

❖ Move paddle - track x coordinate of the mouse
only

❖ Use mouse_x = canvas.get_mouse_x()

Part 4 - Check for collision
❖ Did ball collide with another object in the window
❖ canvas.find_overallapping (x1, y1, x2, y2) which return list of objects

overalling with rectangle whose upper left is (x1, y1) and bottom right is
(x2, y2)

colliding_list = canvas.find_overlapping(……..)
for loop to get a collider object in each loop:

…. do something with collider object

Think about writing a check_collision function that implements all listed above

Part 4 - Check for collision
❖ Use of list

this graphics function gets the location of the ball as a list

ball_coords = canvas.coords(ball)

the list has four elements:

x_1 = ball_coords[0]

y_1 = ball_coords[1]

x_2 = ball_coords[2]

y_2 = ball_coords[3]

we can then get a list of all objects in that area

colliding_list = canvas.find_overlapping(x_1, y_1, x_2, y_2)

Part 4 - Check for collision

❖ Collide with a paddle
❖ Bounce ball towards up

❖ Collide with a brick
❖ Bounce ball towards down

❖ Remove brick from the screen
canvas.delete(square) # deletes the object called square

❖ Count the number of removed bricks
❖ That’s how you know you hit the last brick

