How AI Works & Why You Are Important (in 45 minutes)

Lisa Yan

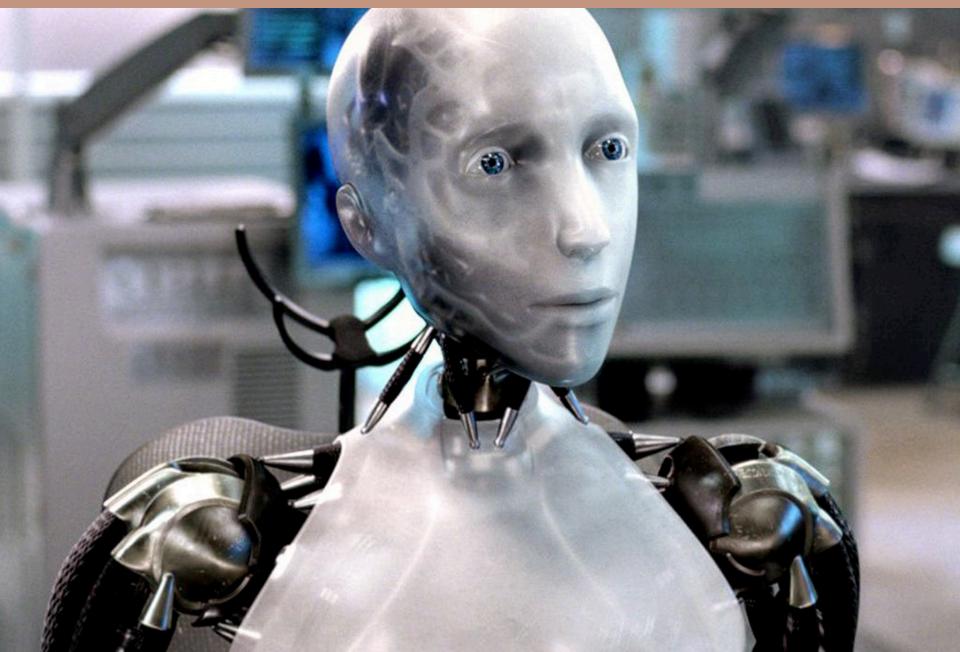
(with slides from Chris Piech)

Announcements

- Final Project due at 6pm!
- Ceren's user study:
 - Consent forms will be handed out Lab 3
 - Email to come soon (with instructions)
 - Do this AFTER you've submitted your project ☺
- CS Bridge exit survey: fill out during Lab 3

Where is my robot?

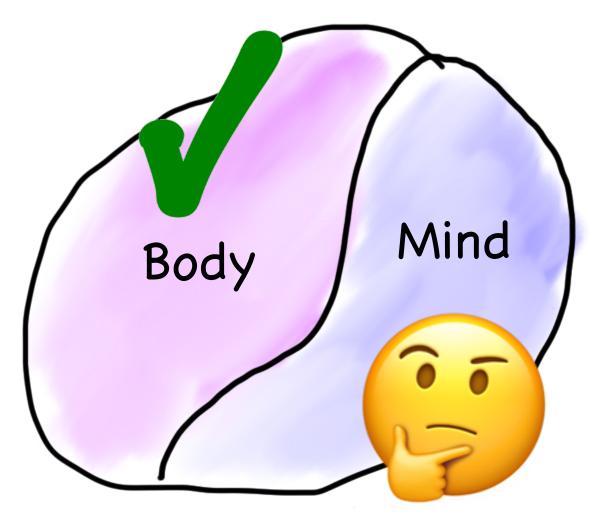
Sci-Fi Has Promised Me Robots



House Cleaning Robot

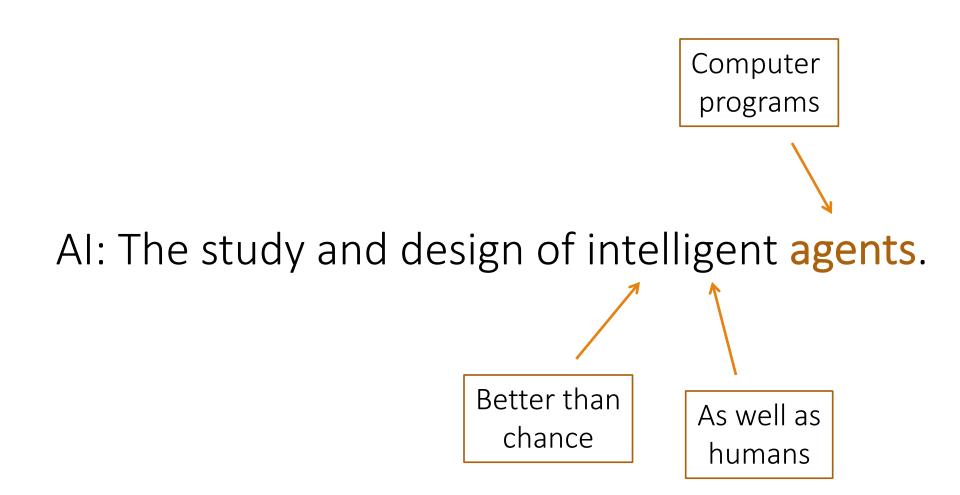
House Cleaning Robot

Robots?

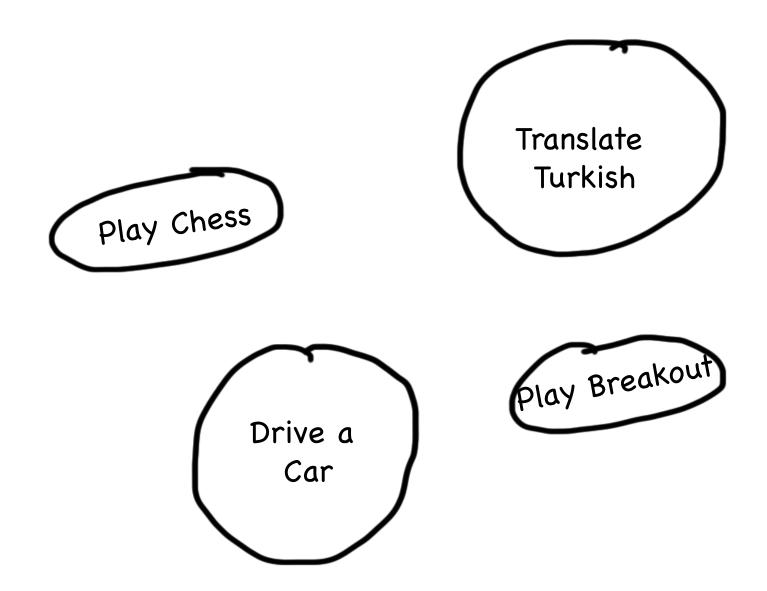


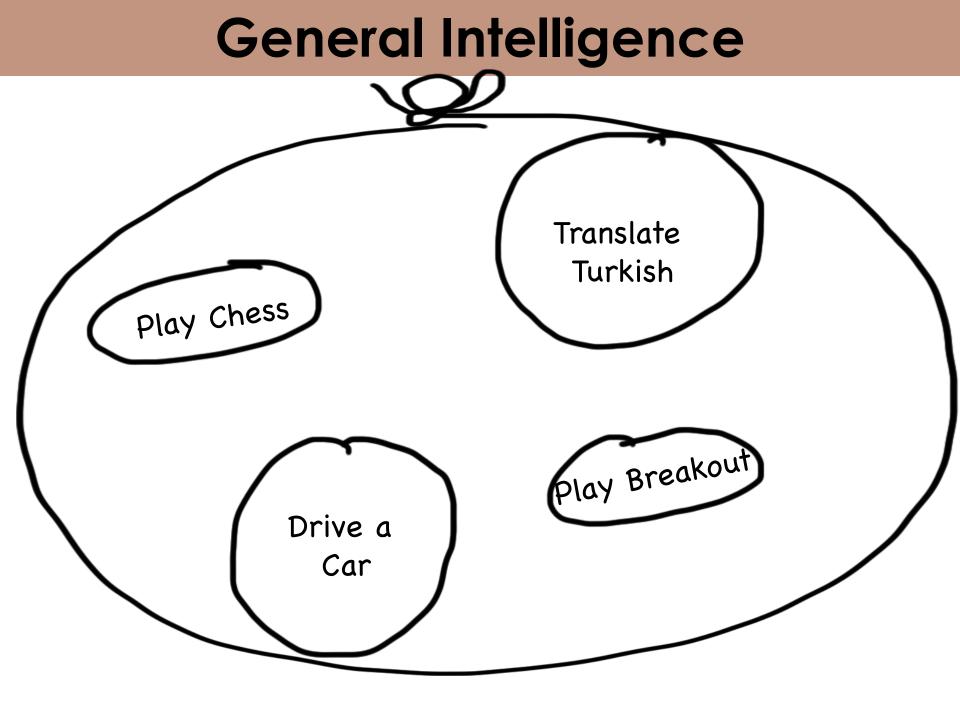
What is AI?

[suspense]



Narrow Intelligence





Brief History

Early Optimism 1950s

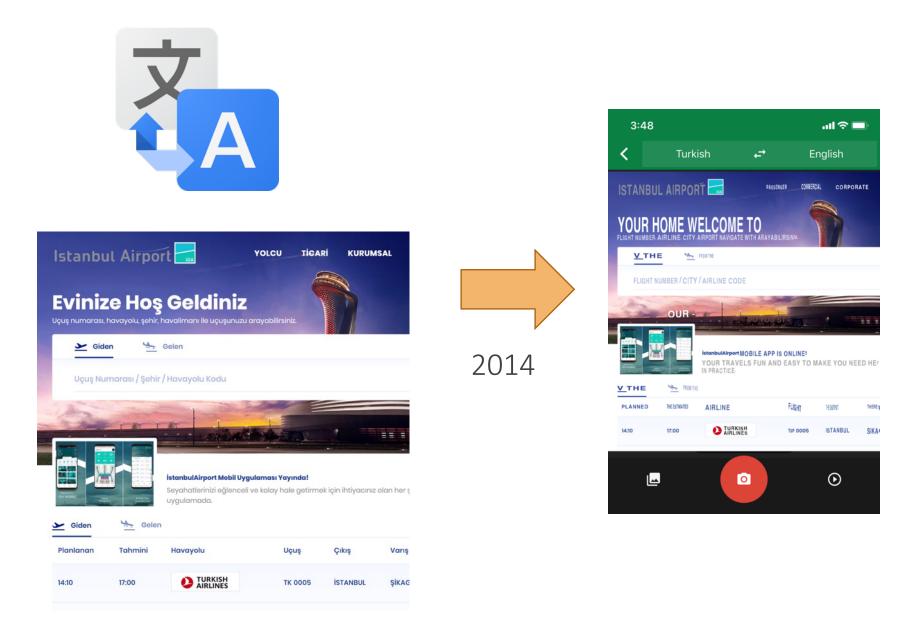
Early Optimism (1950s)

"Machines will be capable, within twenty years, of doing any work a man can do." –Herbert Simon, 1952

Underwhelming Results (1950s-1980s)

The world is too complex!

Modern Game of Al

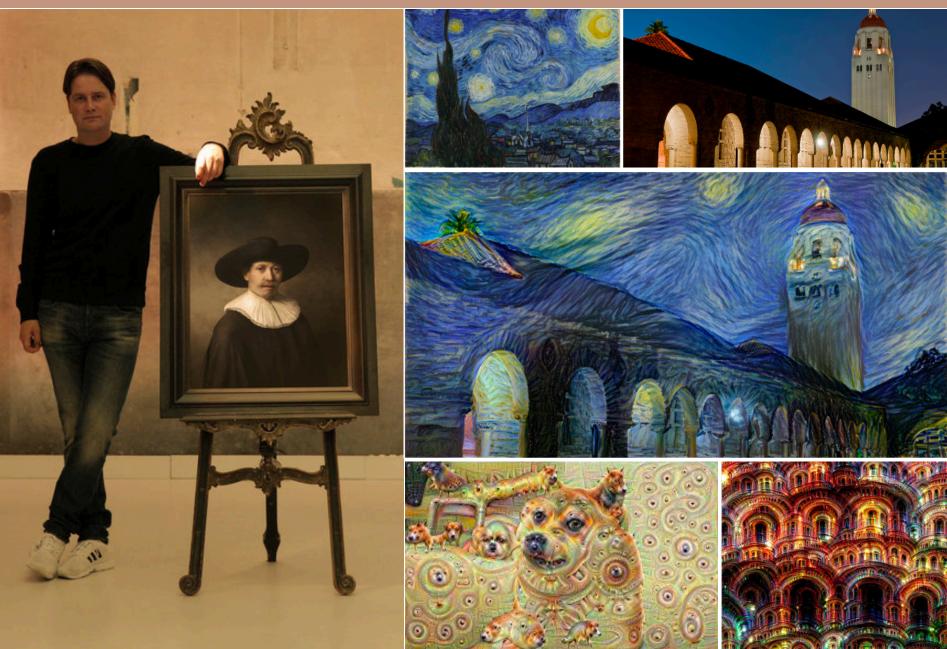


Told Speech Was 30 Years Out

Almost perfect...

The Last Remaining Board Game

Computers Making Art



Self-driving Cars

What is going on?

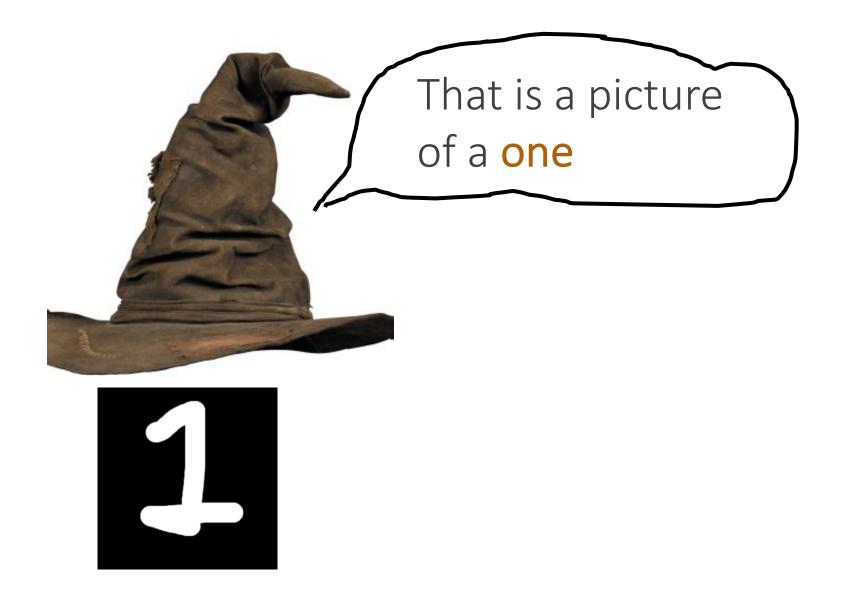
[more suspense]

Story of Modern Al:

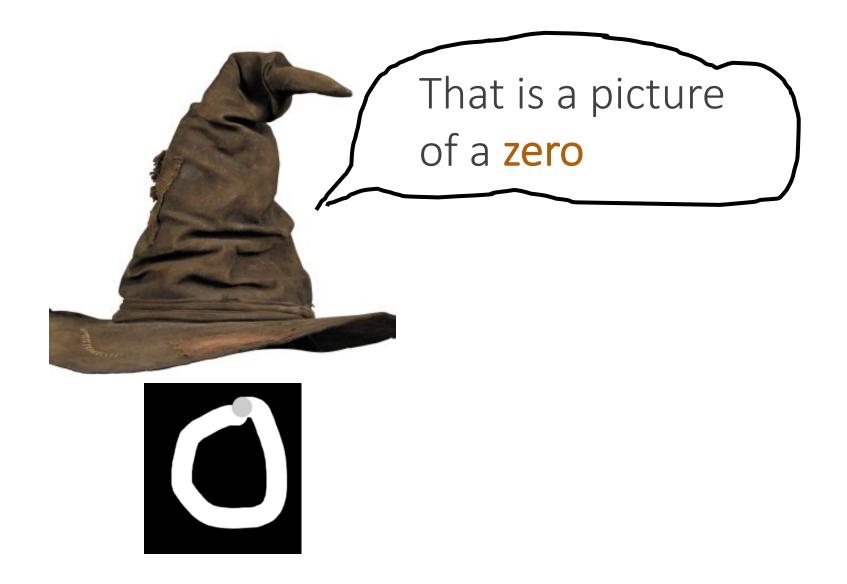
Focus on one problem

Make a Harry Potter Sorting Hat

Classification



Classification

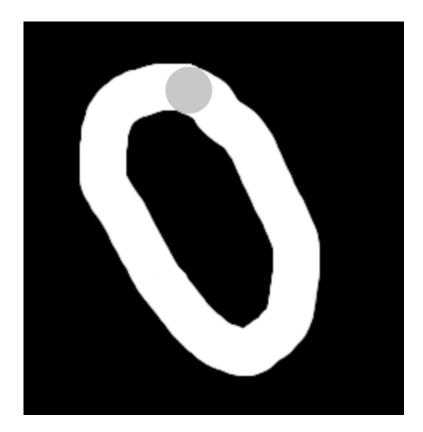


Classification

* It doesn't have to be correct all of the time

Can you do it?

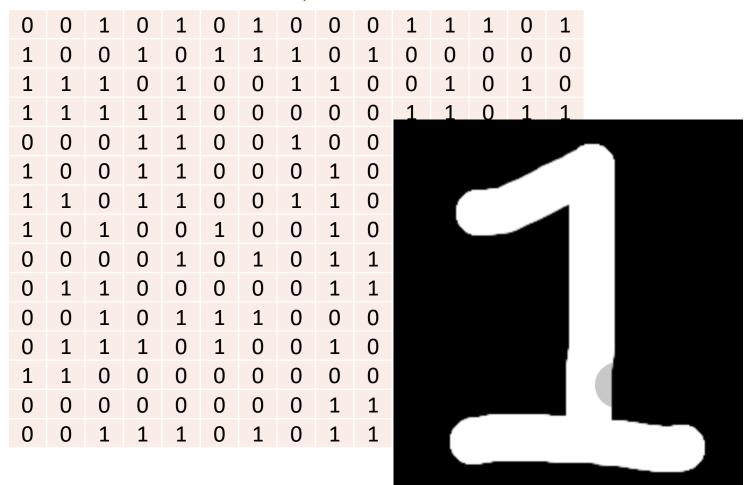
What number is this?



What number is this?

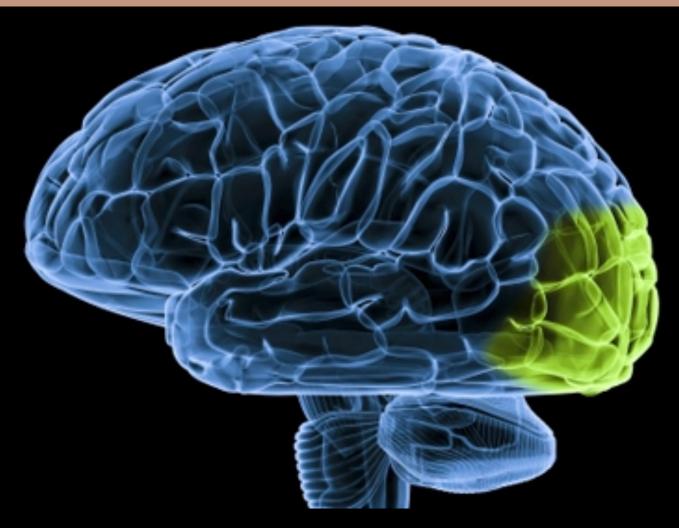
How about now?

What a computer sees



What a human sees

Why is it easy for Humans?



About 30% of your cortex is used from vision 3% is used to process hearing

Very hard to Program

public class HarryHat extends ConsoleProgram {

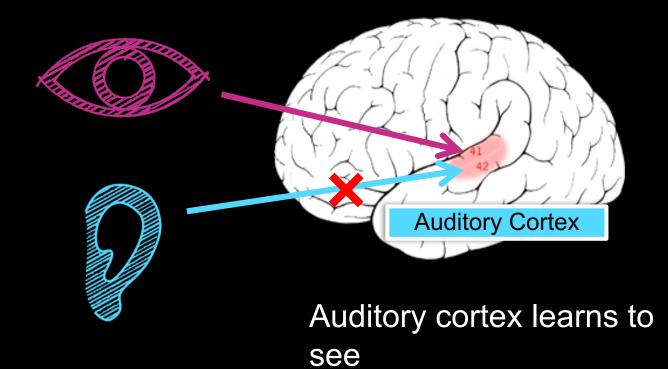
```
public void run() {
    println("Todo: Write program");
}
```

Perhaps there is an insight?

One Algorithm Hypothesis

Much of perception in the brain can be explained with a single learning algorithm.

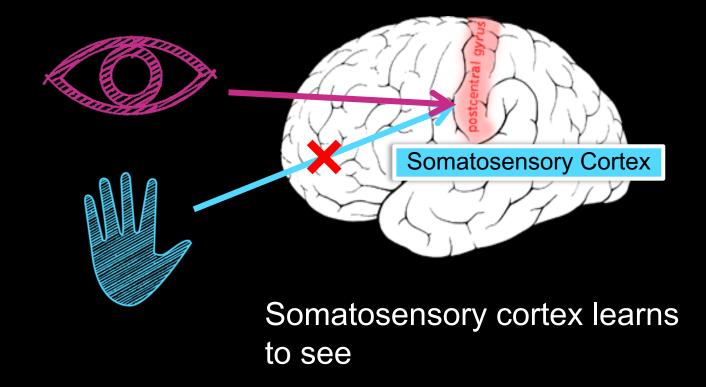
One Algorithm Hypothesis



[Roe et al., 1992]

[Andrew Ng]

One Algorithm Hypothesis



[Metin & Frost, 1989]

[Andrew Ng]

Sensor Representations

Seeing with your tongue

Human echolocation (sonar)

Haptic belt: Direction sense

Implanting a 3rd eye

[BrainPort; Welsh & Blasch, 1997; Nagel et al., 2005; Constantine-Paton & Law, 2009]

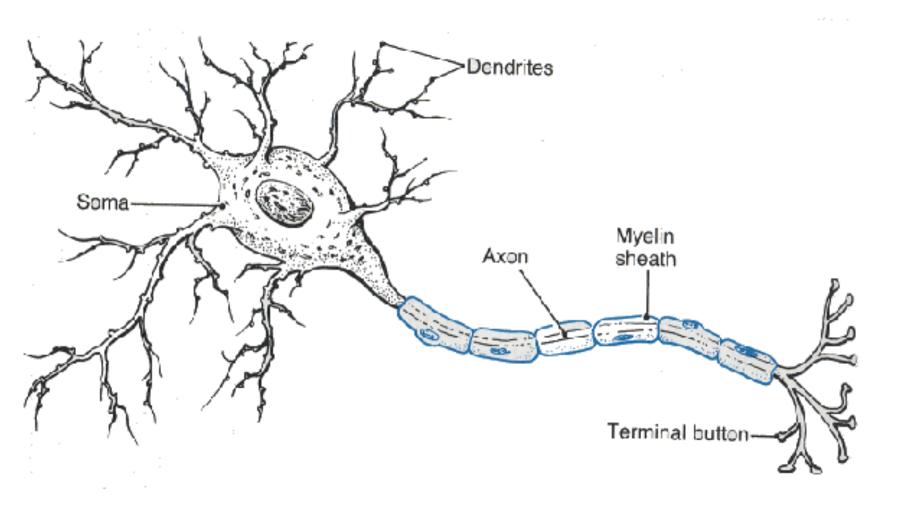
Two Great Ideas

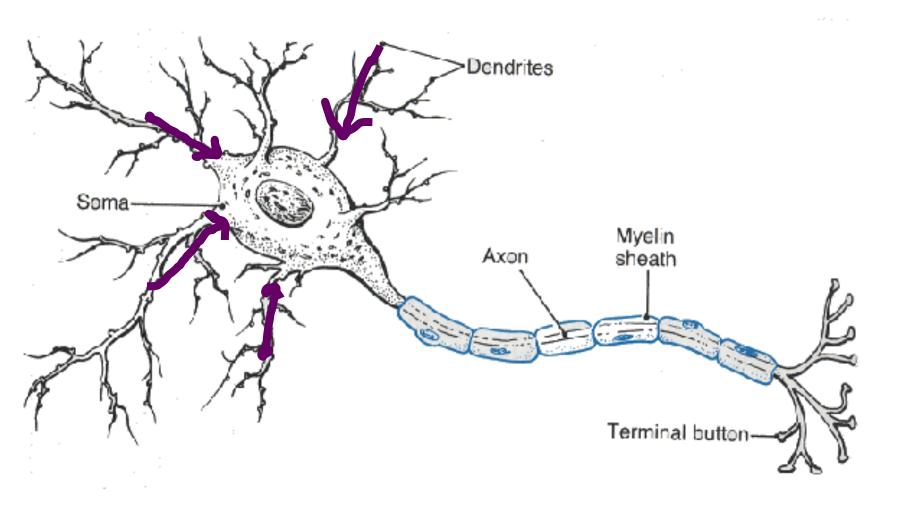
Story of Modern Al:

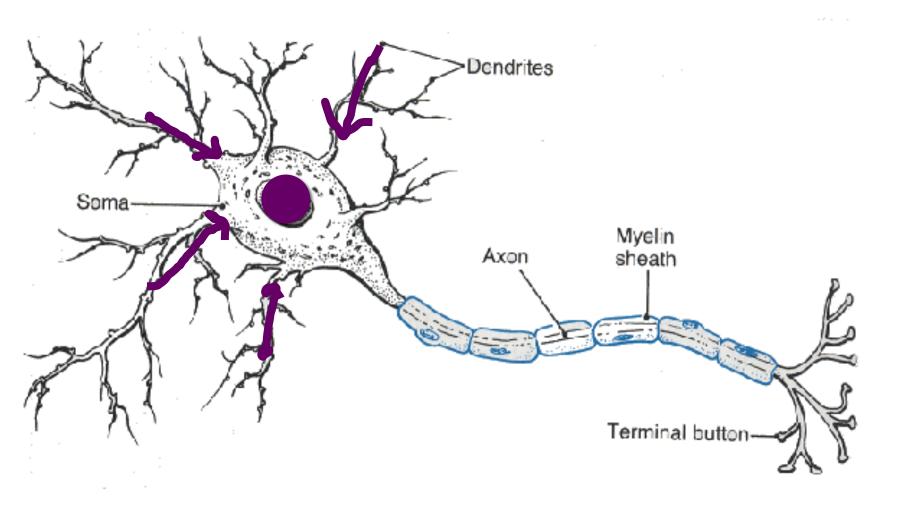
2. Learn by Example

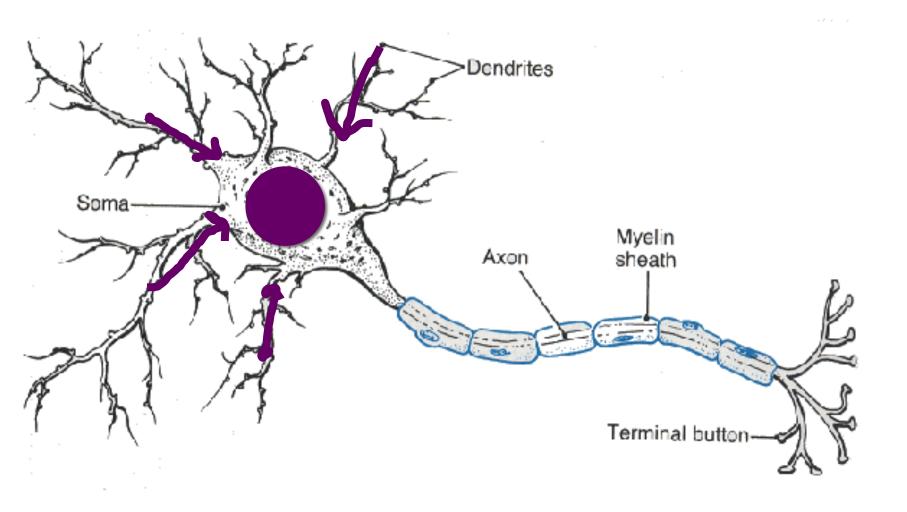
Machine Learning

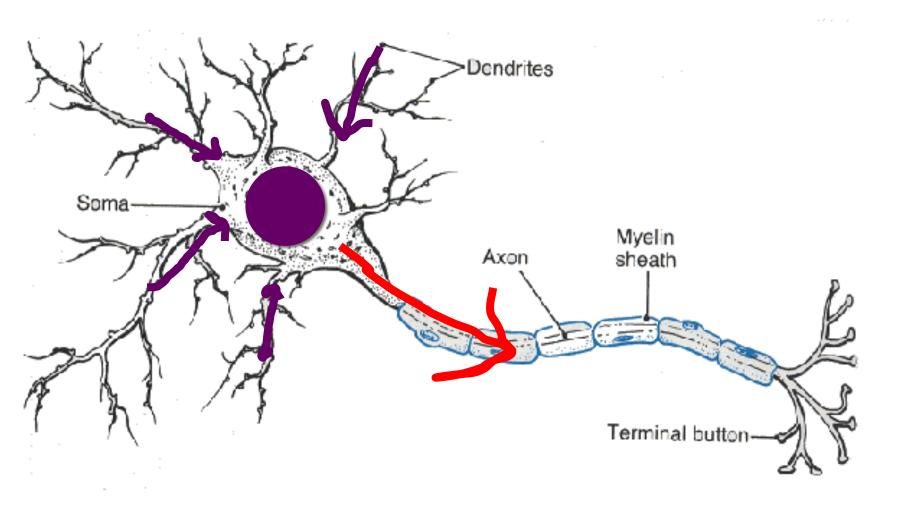
1. Artificial Neurons



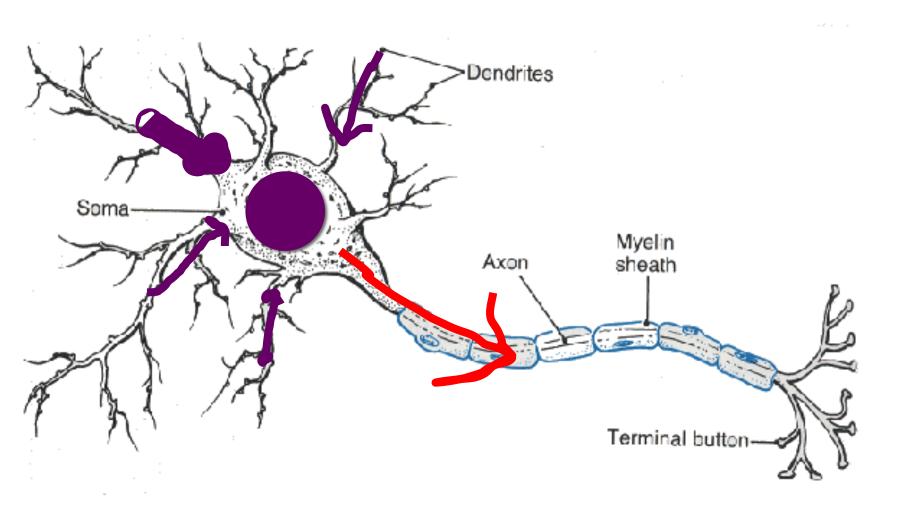




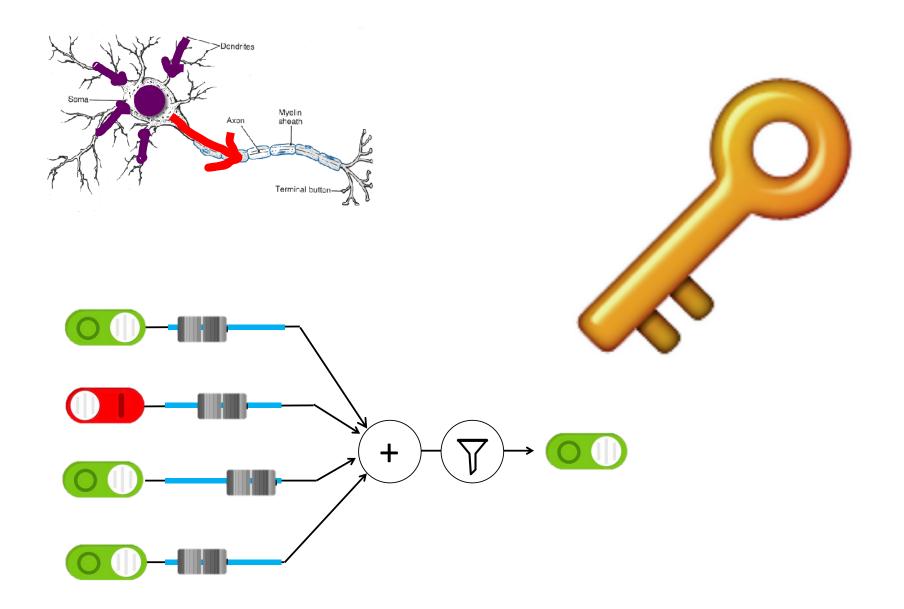




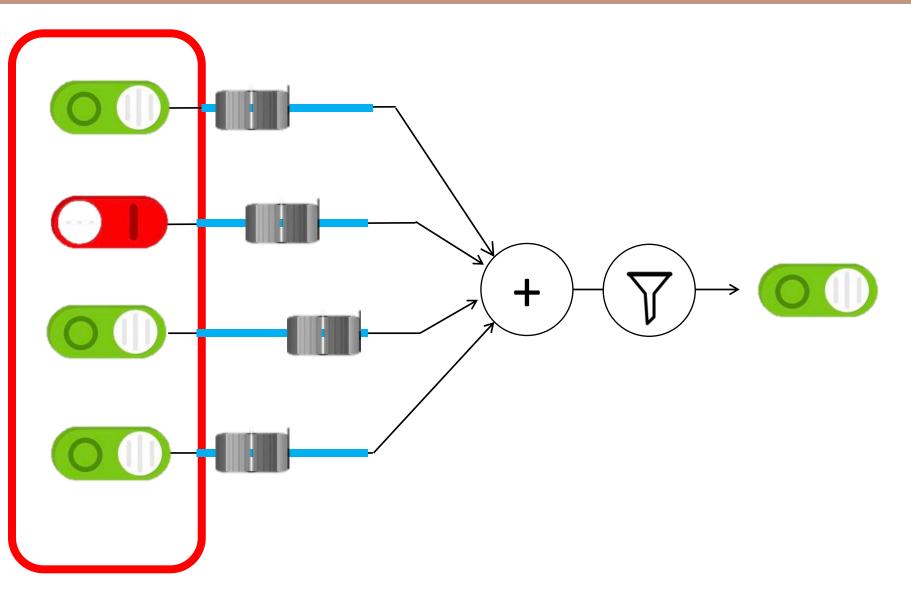
Some Inputs are More Important



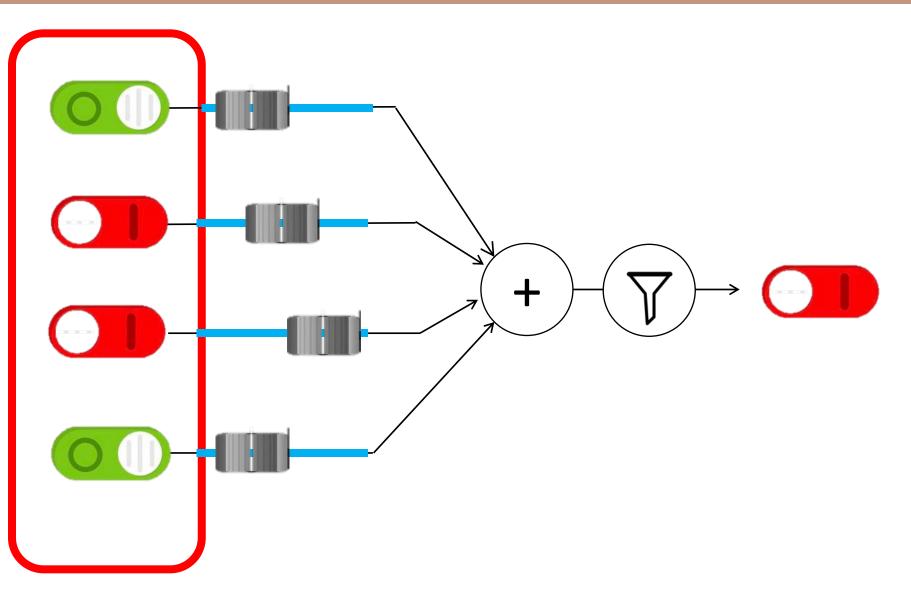
Artificial Neuron



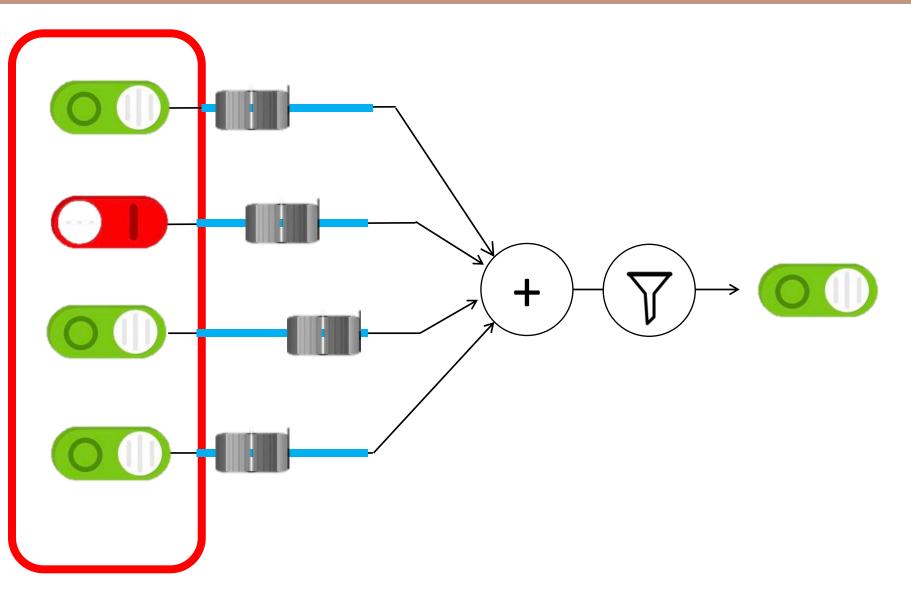
Inputs



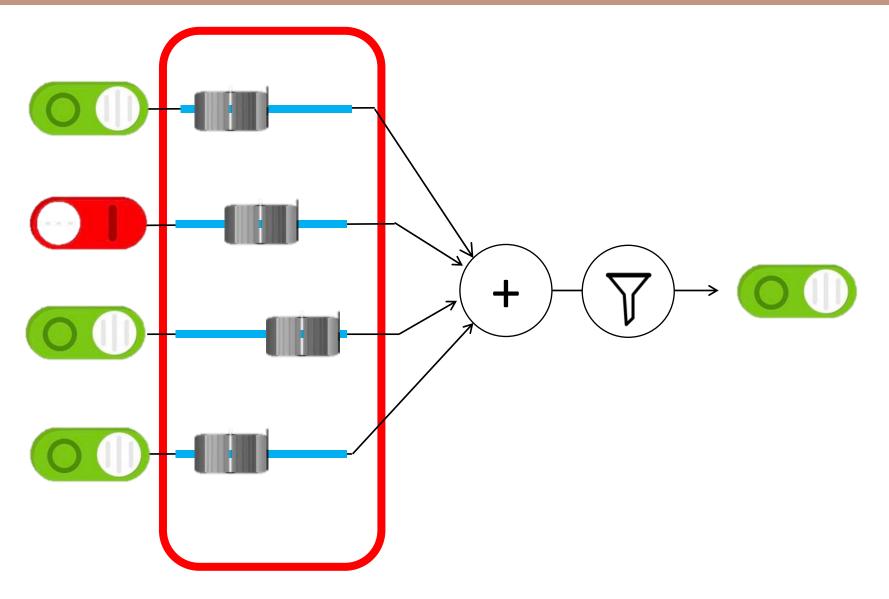
Inputs



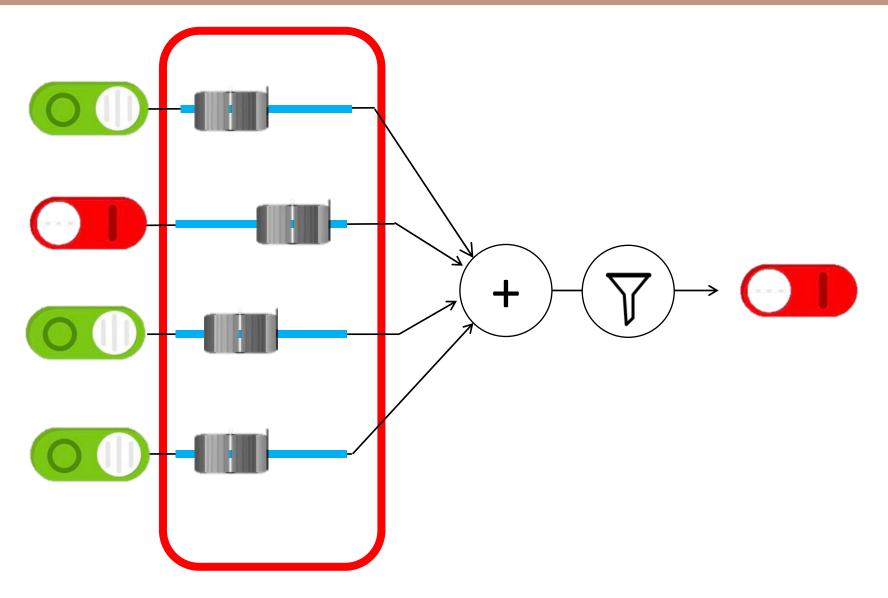
Inputs



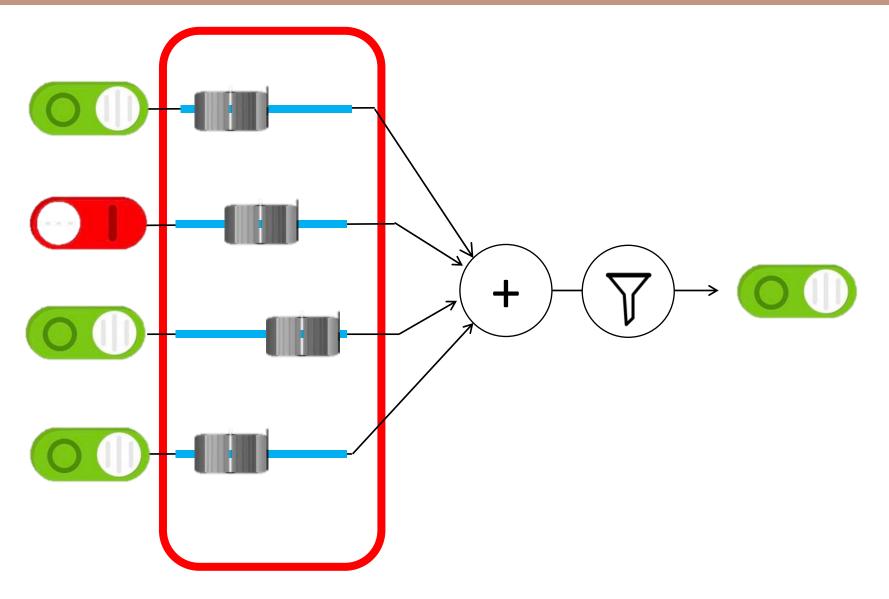
Weights



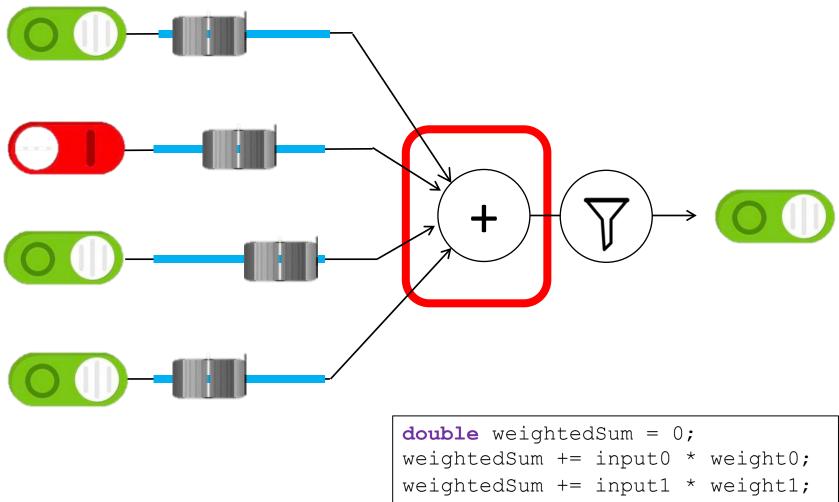
Weights



Weights

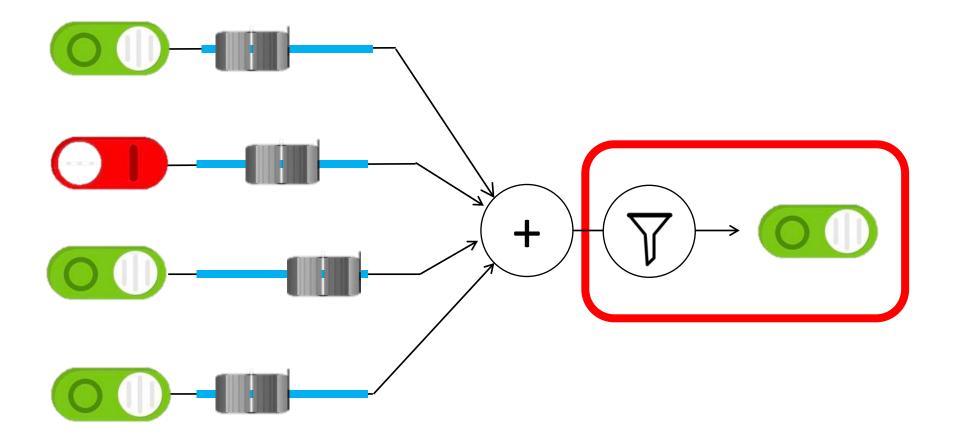


Weighted Sum

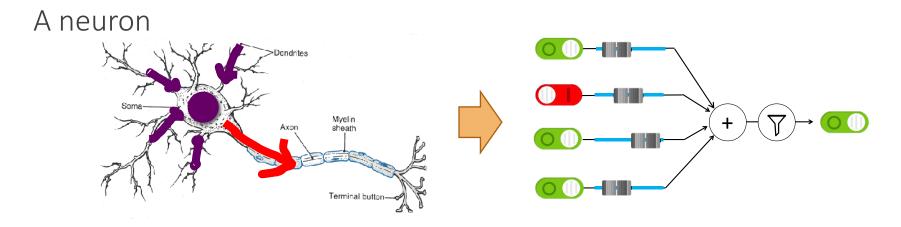


weightedSum += input2 * weight2; weightedSum += input3 * weight3;

Filter and Output

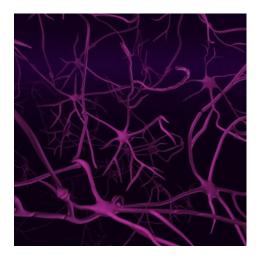


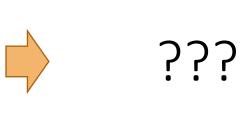
Biological Basis



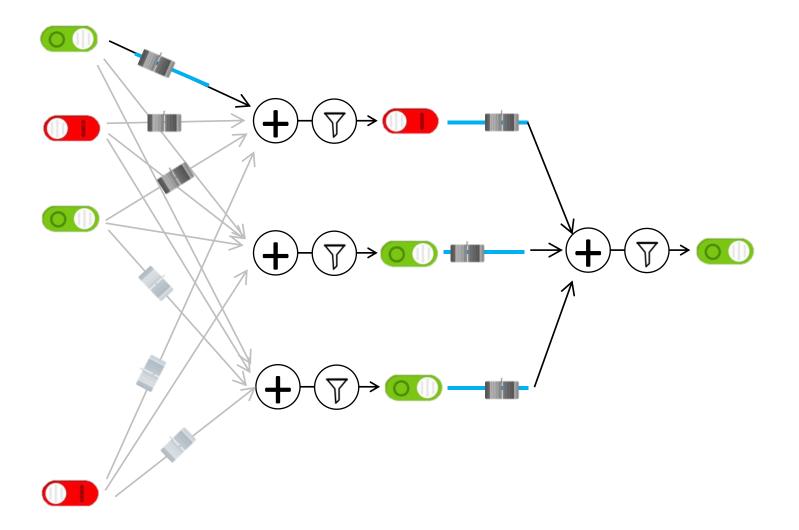
Your brain

(actually, probably someone else's brain)

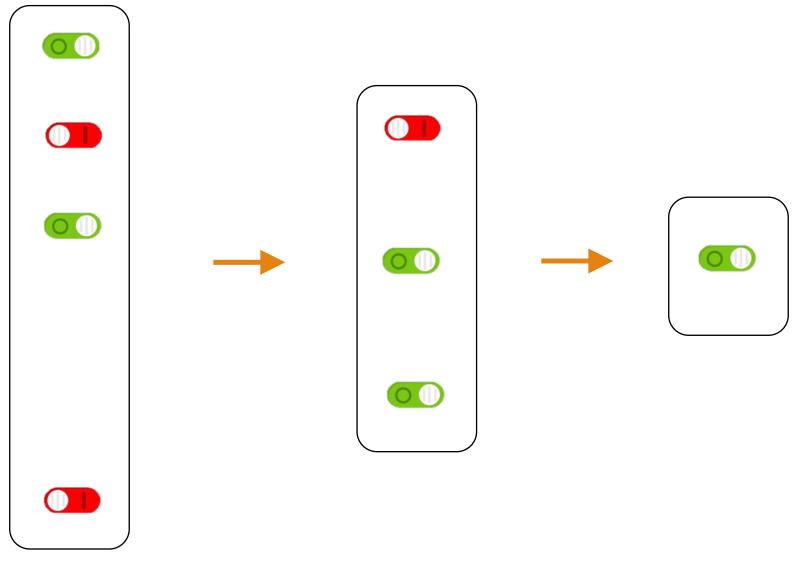




Put Many Together



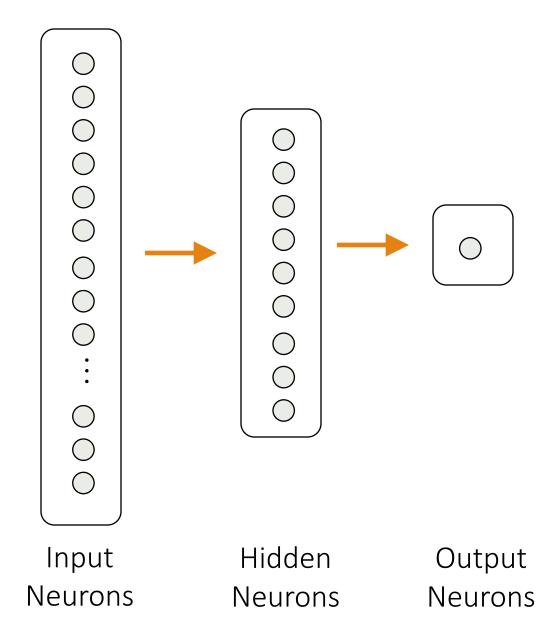
Put Many Together

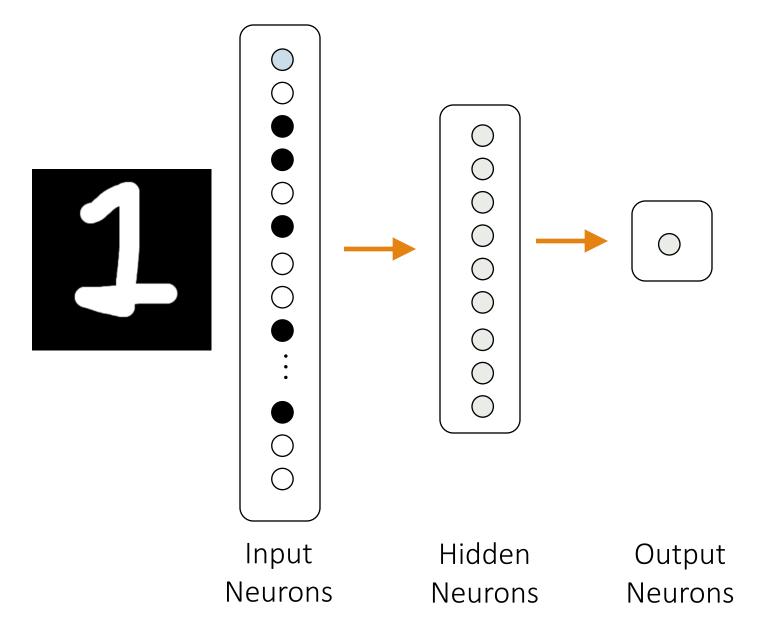


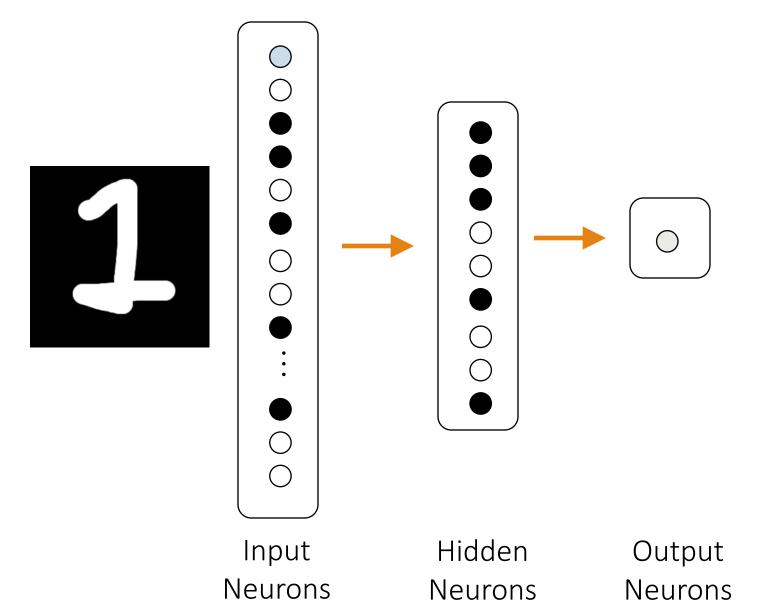
Input Neurons

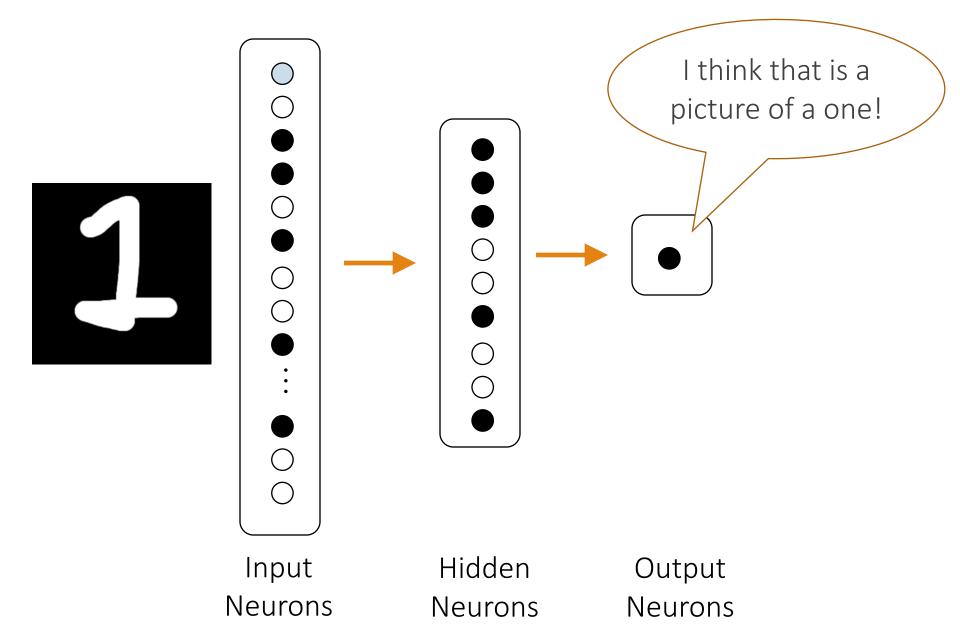
Hidden Neurons

Output Neurons

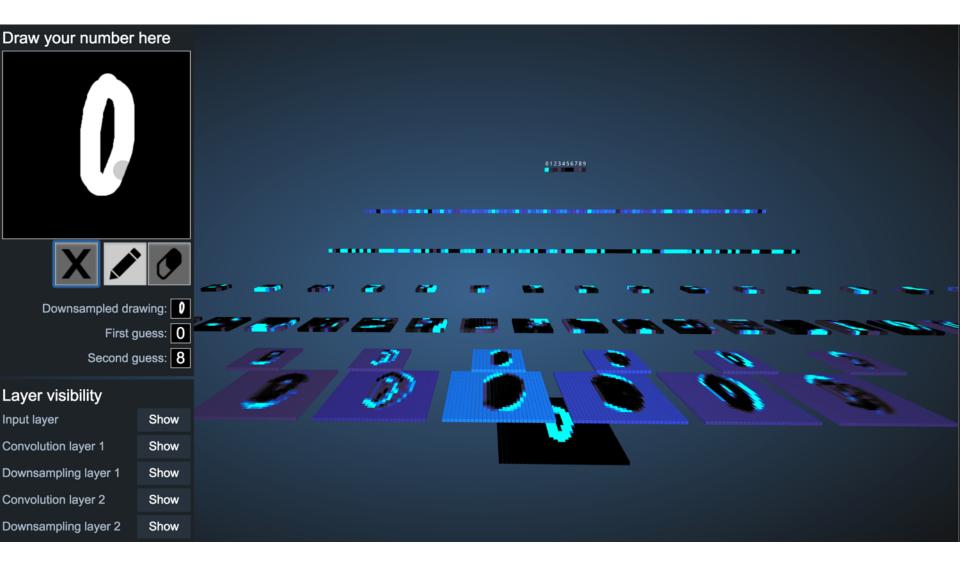






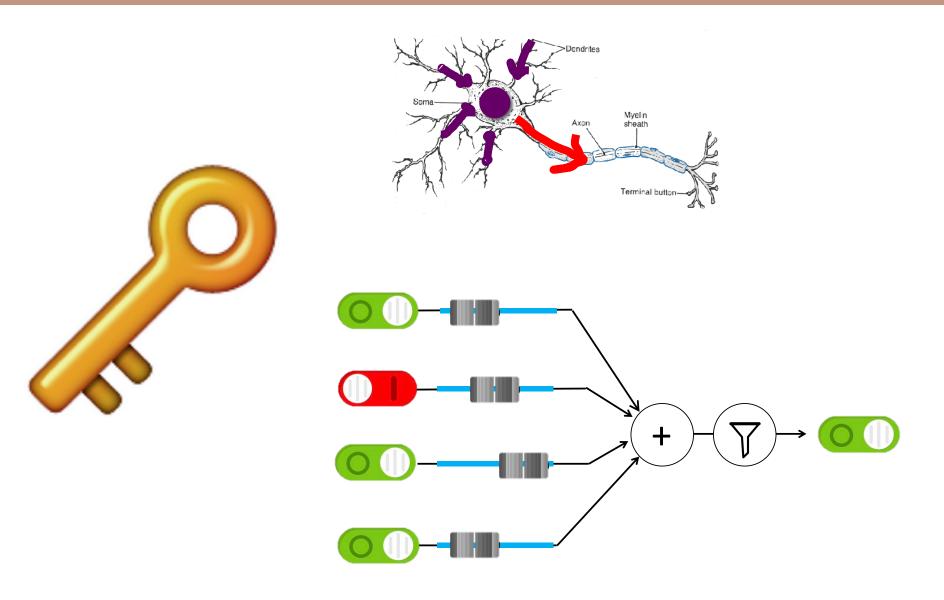


You Can Try It Yourself



http://scs.ryerson.ca/~aharley/vis/conv/

Great Idea: Artificial Neurons



Two Great Ideas

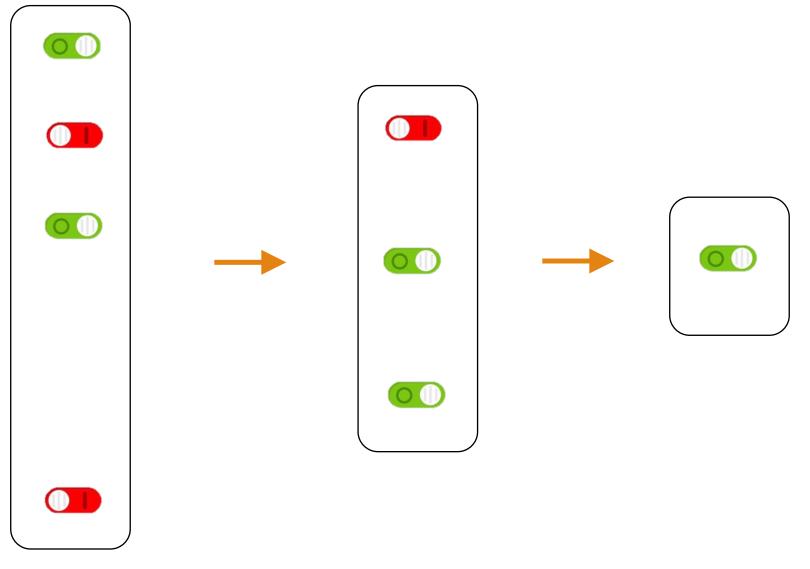
1. Artificial Neurons

2. Learn by Example

2. Learn From Experience

Neural Networks gets their *intelligence* from its sliders (aka its weights)

Neural Network

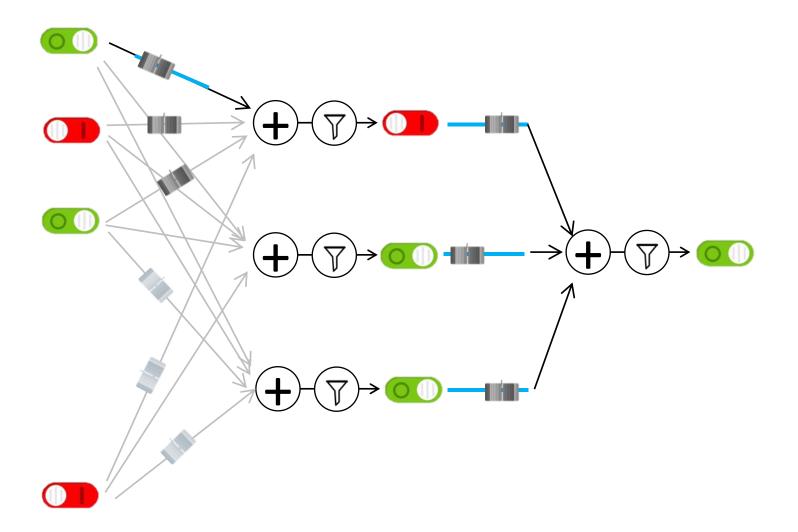


Input Neurons

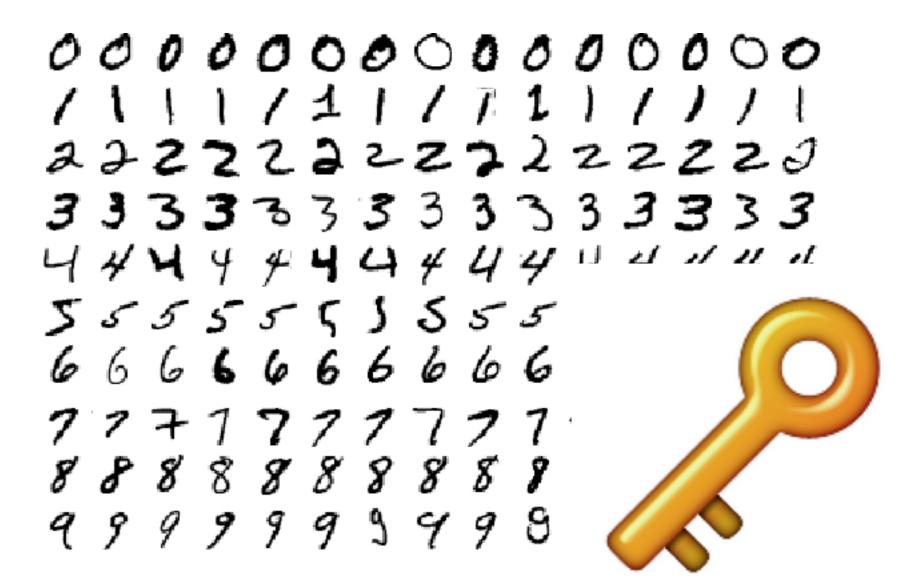
Hidden Neurons

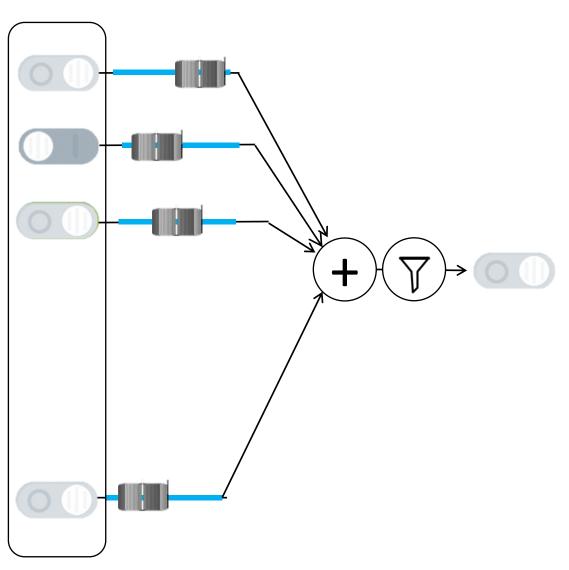
Output Neurons

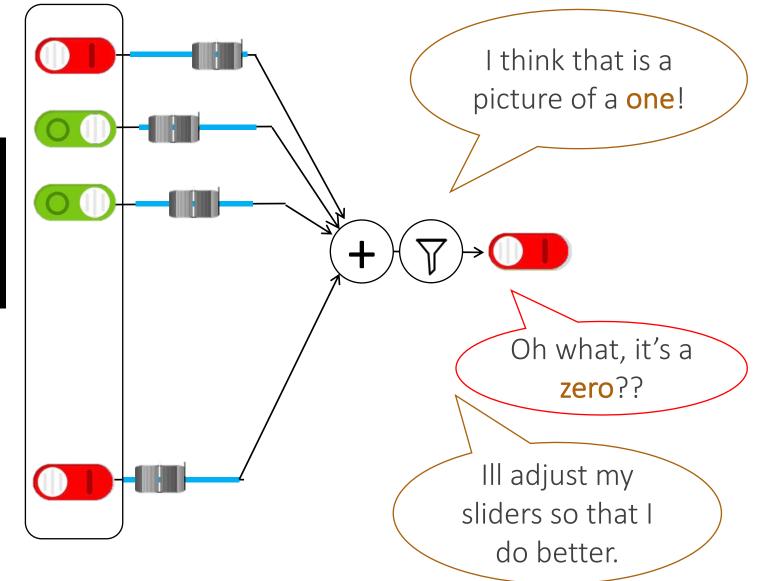
Neural Network

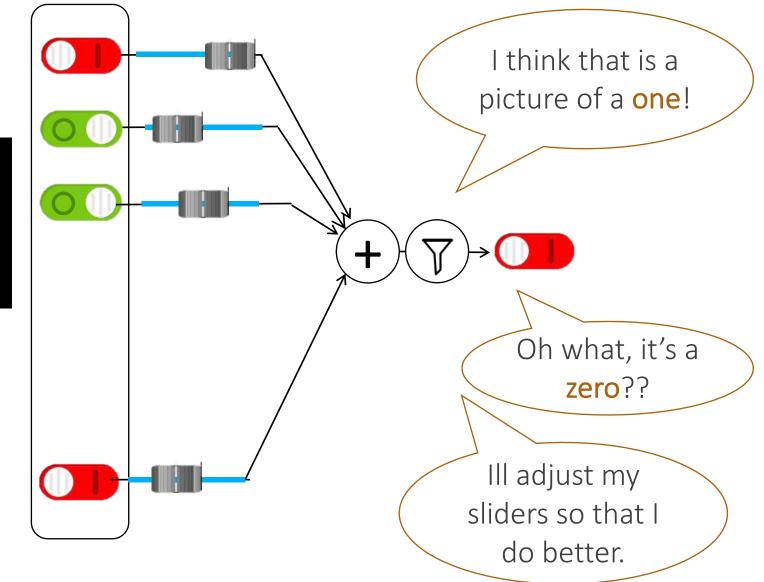


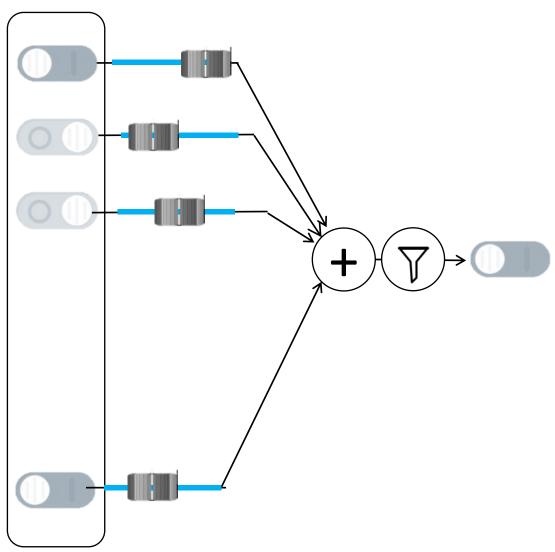
Learn by Example



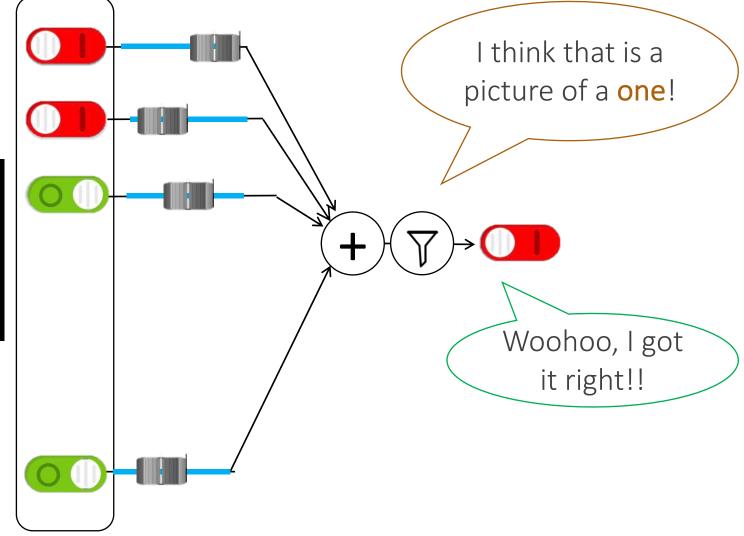


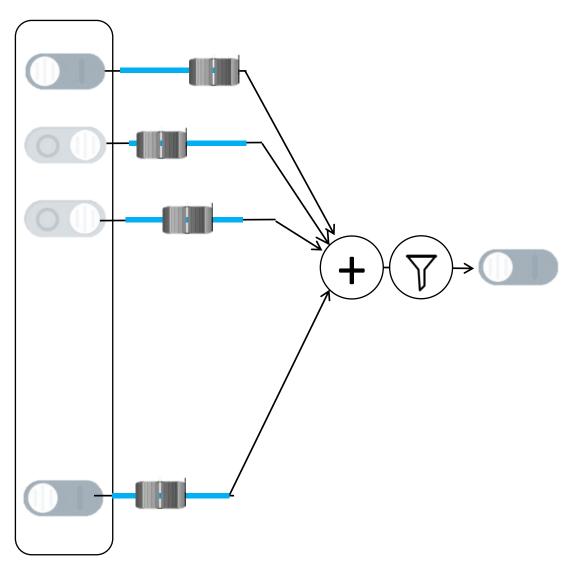


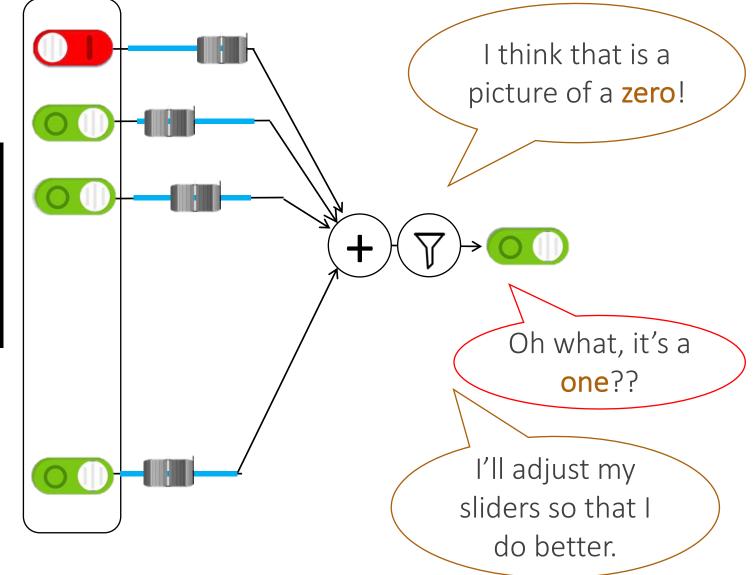


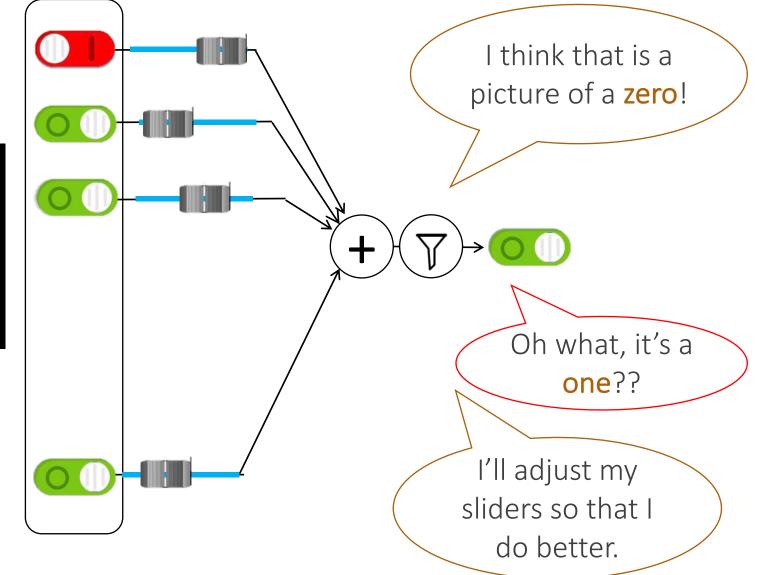












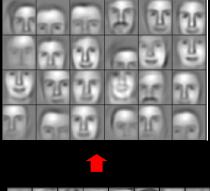
Study Hard!

/ \ \ \ / 1 / 7 1 / 7 1 / / | ファチュアファファファファファ

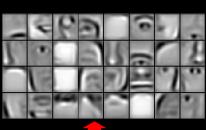
Train on Faces

Visualize the Sliders

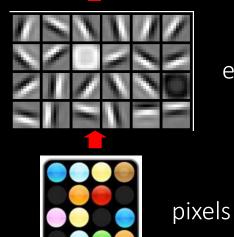
Training set: Aligned images of faces.



object models



object parts (combination of edges)



edges

[Honglak Lee]

Woah... that's like a brain...

True.

ImageNet Decomposition

smoothhound, smoothhound shark, Mustelus mustelus American smooth dogfish, Mustelus canis Florida smoothhound, Mustelus norrisi whitetip shark, reef whitetip shark, Triaenodon obseus Atlantic spiny dogfish, Squalus acanthias Pacific spiny dogfish, Squalus suckleyi hammerhead, hammerhead shark smooth hammerhead, Sphyrna zygaena smalleye hammerhead, Sphyrna tudes shovelhead, bonnethead, bonnet shark, Sphyrna tiburo angel shark, angelfish, Squatina squatina, monkfish electric ray, crampfish, numbfish, torpedo smalltooth sawfish, Pristis pectinatus guitarfish

roughtail stingray, Dasyatis centroura

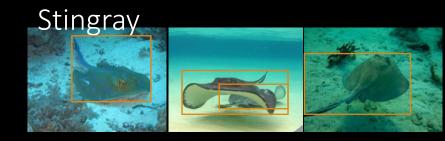
butterfly ray

eagle ray

spotted eagle ray, spotted ray, Aetobatus narinari cownose ray, cow-nosed ray, Rhinoptera bonasus manta, manta ray, devilfish

Atlantic manta, Manta birostris

devil ray, Mobula hypostoma grey skate, gray skate, Raja batis little skate, Raja erinacea



Mantaray

0.005% 1.5%

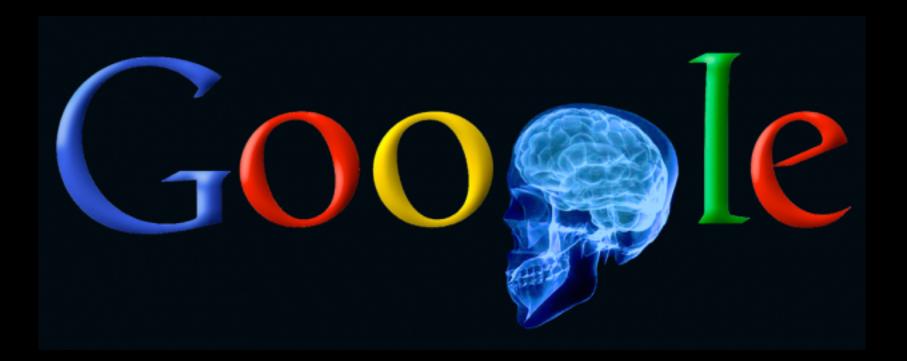
Random guess

Pre Neural Networks (2012)

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012 Szegedy et al, Going Deeper With Convolutions, CVPR 2015

http://image-net.org/challenges/LSVRC/2017/results

Google Brain



1 Trillion Artificial Neurons (btw, human brains have 1 billion neurons)

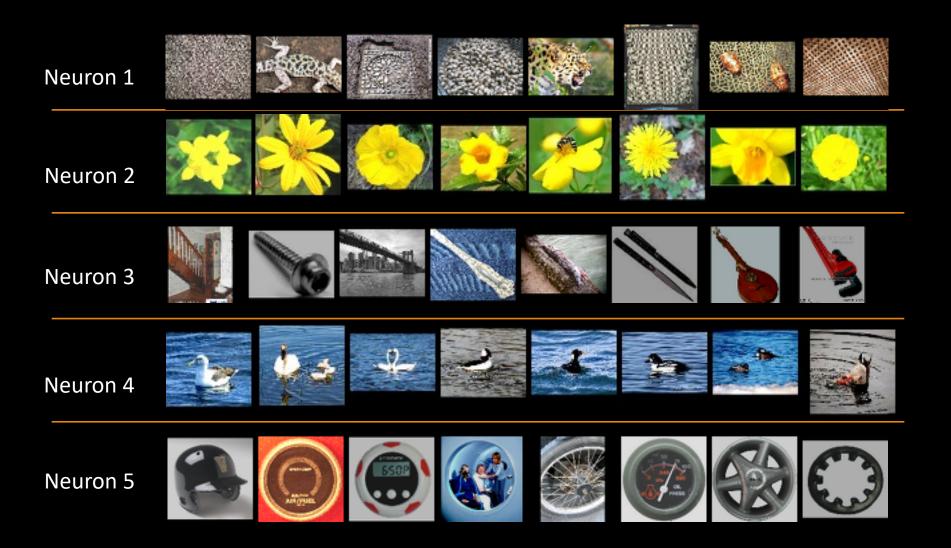
A Neuron That Fires When It Sees Cats

Top stimuli from the test set

Optimal stimulus by numerical optimization

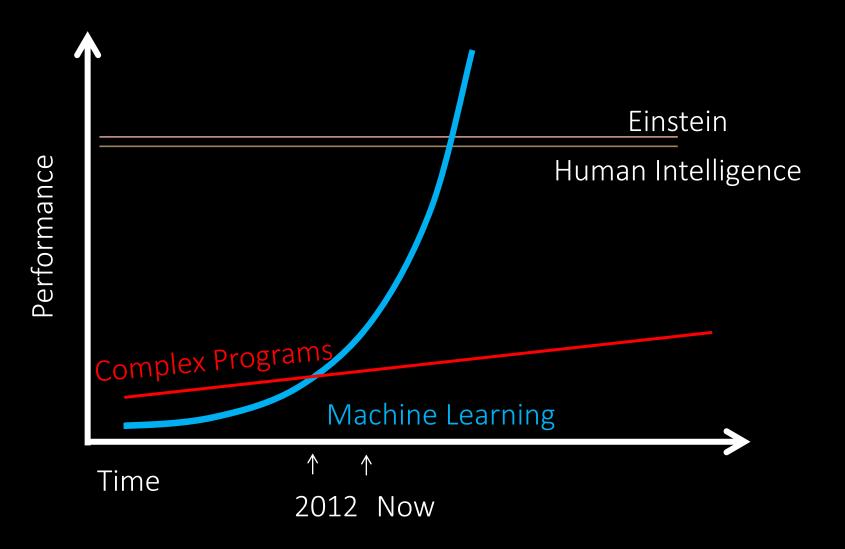
Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012

Other Neurons



Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012

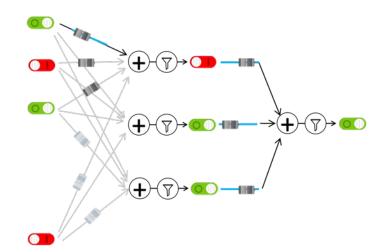
The Future of AI



What's the catch?

(1) Machine Learning Needs Data

(1) Machine Learning Needs Data



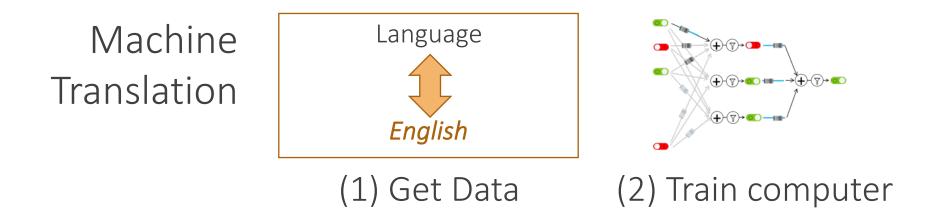
(1) Get Data

(2) Train computer

Compiled by humans

Math and logic

(1) Machine Learning Needs Data



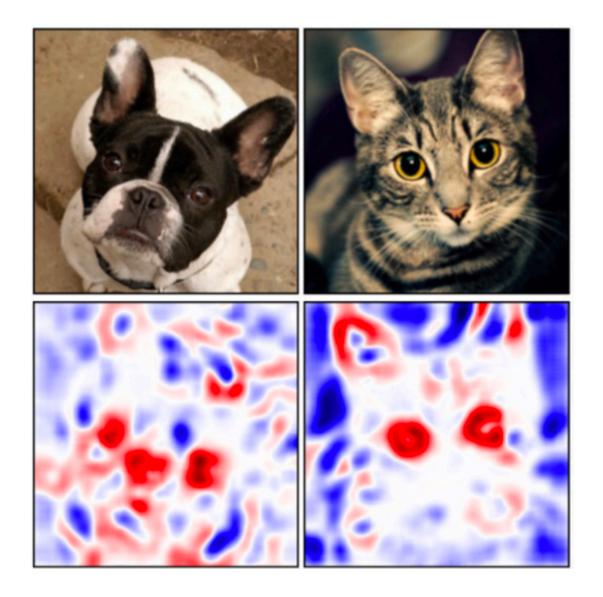
Language	# challenges
German	7
Czech	6.5
Russian	6
Finnish	5
French, Turkish, Chinese	3
German-Czech	1

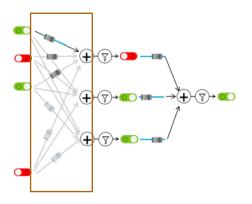
One-time appearances: Hindi, Spanish, Lithuanian, Romanian, Latvian, Estonian, Gujarati

Because the engineers all speak English!

Conference in Machine Translation (WMT), since 2013 http://www.statmt.org/wmt19/

(2) How can we explain decisions?





Visualize sliders

Zintgraf et al., Visualizing Deep Neural Network Decisions: Prediction Difference Analysis, ICLR 2017

(2) How can we explain decisions?

(2) How can we explain decisions?

(not fine)

(3) How can we make it fair?

$\overrightarrow{\text{man}} - \overrightarrow{\text{woman}} \approx \overrightarrow{\text{king}} - \overrightarrow{\text{queen}}$

$\overrightarrow{\text{man}} - \overrightarrow{\text{woman}} \approx \overrightarrow{\text{computer programmer}} - \overrightarrow{\text{homemaker}}$.

Should our data reflect society's systemic bias?

Bolukbasi et al., *Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings,* NIPS 2016

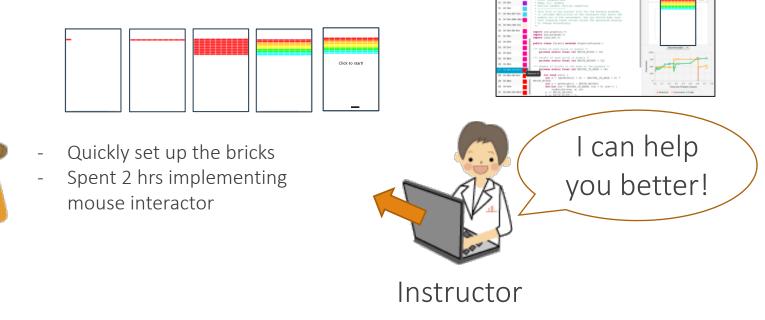
Dataset: Google News

The current challenge

Understand data.

Then train your model.

Then make your system usable for *real people*.



Tracy

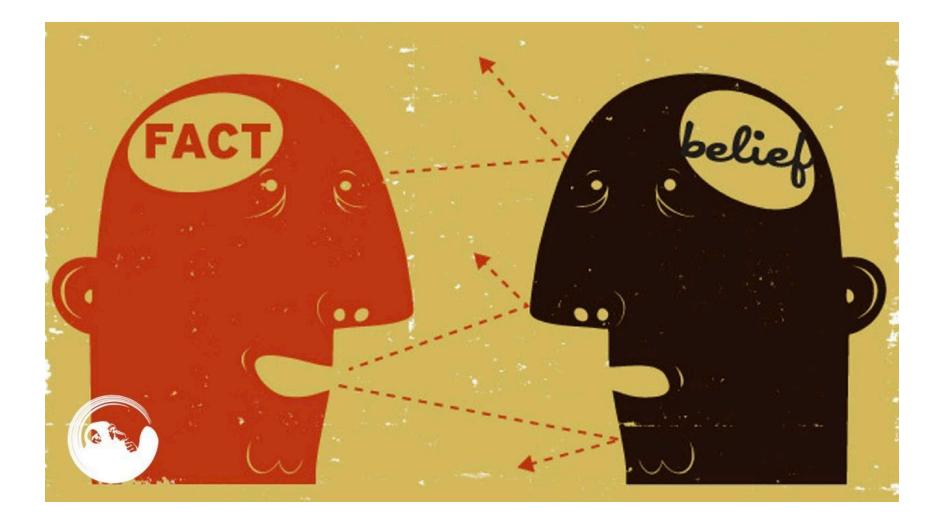
Where is my robot?

... coming soon

You can help

A little math

You can help



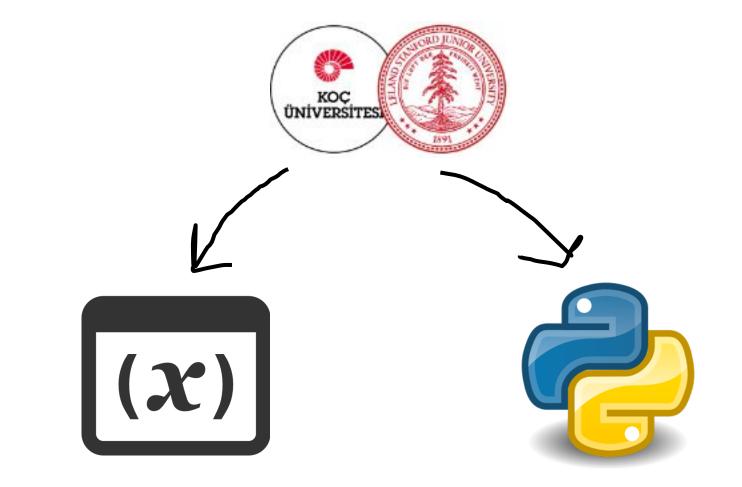
Understand; don't assume

Can you do it?

(I explained to you the main components)

Not easy... But yes. You can.

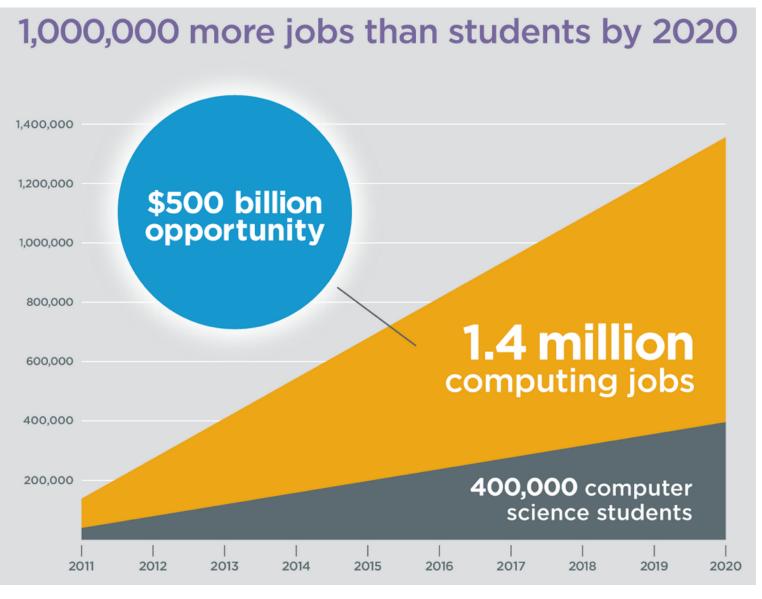
Path to Al



Why?

Closest Thing To Magic

It's Useful

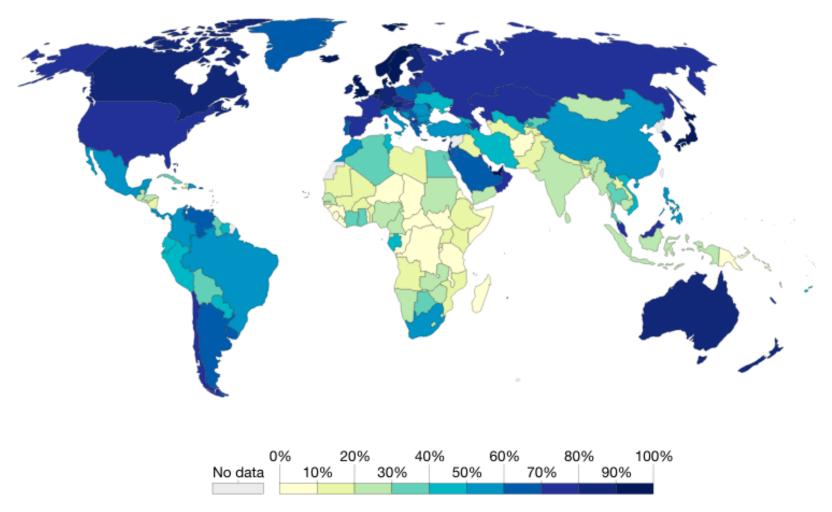


Code.org

It should fit your culture

Share of the population using the Internet, 2015

All individuals who have used the Internet in the last 3 months are counted as Internet users. The Internet can be used via a computer, mobile phone, personal digital assistant, games machine, digital TV etc.



(make it so that) Everyone is Welcome

The End?

Submit your projects by 6pm!