
This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Mehran Sahami, Eric Roberts, Stuart Reges, and others.

Events

2

Graphics/
Animation

Events
Breakout

Lists and
Maps

Final
Project

The
 Riv

er o
f Ja

va

You are here

3

Learning Goals

• Learn to respond to mouse events in GraphicsPrograms
• Learn to use instance variables to store information outside of

methods

4

Plan for Today

•Event-driven programming
•Demo: Click for Daisies
•Demo: Doodler
•Instance Variables
•null and getElementAt
•Demo: Whack-a-Mole

5

Plan for Today

•Event-driven programming
•Demo: Click for Daisies
•Demo: Doodler
•Instance Variables
•null and getElementAt
•Demo: Rubbish Sweeper

6

Events

• event: Some external stimulus that your program can
respond to.

• event-driven programming: A coding style (common in
graphical programs) where your code is executed in
response to user events.

7

Events

•Program launches

8

Events

•Program launches
•Mouse motion
•Mouse clicking
•Keyboard keys pressed
•Device rotated
•Device moved
•GPS location changed
•and more…

9

Events

•Program launches
•Mouse motion
•Mouse clicking
•Keyboard keys pressed
•Device rotated
•Device moved
•GPS location changed
•and more…

10

Events

public void run() {
// Java runs this when program launches

}

11

Events

public void run() {
// Java runs this when program launches

}

public void mouseClicked(MouseEvent event) {
// Java runs this when mouse is clicked

}

12

Events

public void run() {
// Java runs this when program launches

}

public void mouseClicked(MouseEvent event) {
// Java runs this when mouse is clicked

}

public void mouseMoved(MouseEvent event) {
// Java runs this when mouse is moved

}

13

Example: ClickForDaisy
import acm.program.*;
import acm.graphics.*;
import java.awt.*;
import java.awt.event.*; // NEW

public class ClickForDaisy extends GraphicsProgram {

public void run() {
addMouseListeners();

}

// Add a Daisy image at 50, 50 on mouse click
public void mouseClicked(MouseEvent event) {

GImage daisy = new GImage("res/daisy.png", 50, 50);
add(daisy);

}
}

14

addMouseListeners()
• You must call addMouseListeners() in your run method if you want

to respond to mouse events in your program.
• After this is called, your program will start “listening” for mouse

events.

15

MouseEvent Objects

• A MouseEvent contains information about the event that
just occurred:

Method Description
e.getX() the x-coordinate of mouse cursor in the window
e.getY() the y-coordinate of mouse cursor in the window

16

Example: ClickForDaisies

17

Example: ClickForDaisies
public class ClickForDaisies extends GraphicsProgram {

// Add a Daisy image where the user clicks
public void mouseClicked(MouseEvent event) {
// Get information about the event
double mouseX = event.getX();
double mouseY = event.getY();

// Add Daisy at the mouse location
GImage daisy = new GImage("res/daisy.png", mouseX, mouseY);
add(daisy);

}
}

18

Example: ClickForDaisies
public class ClickForDaisies extends GraphicsProgram {

// Add a Daisy image where the user clicks
public void mouseClicked(MouseEvent event) {
// Get information about the event
double mouseX = event.getX();
double mouseY = event.getY();

// Add Daisy at the mouse location
GImage daisy = new GImage("res/daisy.png", mouseX, mouseY);
add(daisy);

}
}

19

Types of Mouse Events
• There are many different types of mouse events.

– Each takes the form:
public void eventMethodName(MouseEvent event) { ...

Method Description
mouseMoved mouse cursor moves
mouseDragged mouse cursor moves while button is held down
mousePressed mouse button is pressed down
mouseReleased mouse button is lifted up
mouseClicked mouse button is pressed and then released
mouseEntered mouse cursor enters your program's window
mouseExited mouse cursor leaves your program's window

20

Plan for Today

•Event-driven programming
•Demo: Click for Daisies
•Demo: Doodler
•Instance Variables
•null and getElementAt
•Demo: Whack-a-Mole

21

Coding Together: Doodler

22

Doodler
private static final int SIZE = 10;
...

public void mouseDragged(MouseEvent event) {
double mouseX = event.getX();
double mouseY = event.getY();
double rectX = mouseX – SIZE / 2.0;
double rectY = mouseY – SIZE / 2.0;
GRect rect = new GRect(rectX, rectY, SIZE, SIZE);
rect.setFilled(true);
add(rect);

}

23

Doodler
public void mouseDragged(MouseEvent event) {

double mouseX = event.getX();
double mouseY = event.getY();
double rectX = mouseX – SIZE / 2.0;
double rectY = mouseY – SIZE / 2.0;
GRect rect = new GRect(rectX, rectY, SIZE, SIZE);
rect.setFilled(true);
add(rect);

}

24

Doodler
public void mouseDragged(MouseEvent event) {

double mouseX = event.getX();
double mouseY = event.getY();
double rectX = mouseX – SIZE / 2.0;
double rectY = mouseY – SIZE / 2.0;
GRect rect = new GRect(rectX, rectY, SIZE, SIZE);
rect.setFilled(true);
add(rect);

}

25

Doodler
public void mouseDragged(MouseEvent event) {

double mouseX = event.getX();
double mouseY = event.getY();
double rectX = mouseX – SIZE / 2.0;
double rectY = mouseY – SIZE / 2.0;
GRect rect = new GRect(rectX, rectY, SIZE, SIZE);
rect.setFilled(true);
add(rect);

}

26

Doodler
public void mouseDragged(MouseEvent event) {

double mouseX = event.getX();
double mouseY = event.getY();
double rectX = mouseX – SIZE / 2.0;
double rectY = mouseY – SIZE / 2.0;
GRect rect = new GRect(rectX, rectY, SIZE, SIZE);
rect.setFilled(true);
add(rect);

}

27

Recap: Events
1) User performs some action, like moving / clicking the mouse.
2) This causes an event to occur.
3) Java executes a particular method to handle that event.
4) The method's code updates the screen appearance in some way.

28

Revisiting Doodler
public void mouseDragged(MouseEvent event) {

double mouseX = event.getX();
double mouseY = event.getY();
double rectX = mouseX – SIZE / 2.0;
double rectY = mouseY – SIZE / 2.0;
GRect rect = new GRect(rectX, rectY, SIZE, SIZE);
rect.setFilled(true);
add(rect);

}

What if we wanted the same GRect to track the
mouse, instead of making a new one each time?

29

Plan for Today

•Event-driven programming
•Demo: Click for Daisies
•Demo: Doodler
•Instance Variables
•null and getElementAt
•Demo: Whack-a-Mole

30

Instance Variables
private type name; // declared outside of any method

• Instance variable: A variable that lives outside of any method.
– The scope of an instance variable is throughout an entire file (class).

– Useful for data that must persist throughout the program, or that
cannot be stored as local variables or parameters (event handlers).

– It is bad style to overuse instance variables

31

Example: MouseTracker

32

Plan for Today

•Event-driven programming
•Demo: Click for Daisies
•Demo: Doodler
•Instance Variables
•null and getElementAt
•Demo: Whack-a-Mole

33

getElementAt

34

getElementAt returns the object at this location on the
canvas

GObject objectHere = getElementAt(x, y);

getElementAt

35

getElementAt returns the object at this location on the
canvas

GObject objectHere = getElementAt(x, y);
if (objectHere != null) {

// do something with objectHere
} else {

// null – nothing at that location
}

getElementAt

36

Null

Null is a special variable value that objects can have that
means “nothing”. Primitives cannot be null.

If a method returns an object, it can return null to signify
“nothing”. (just say return null;)

// may be a GObject, or null if nothing at (x, y)
GObject maybeAnObject = getElementAt(x, y);

37

Null

You can check if something is null using == and !=.

// may be a GObject, or null if nothing at (x, y)
GObject maybeAnObject = getElementAt(x, y);
if (maybeAnObject != null) {

// do something with maybeAnObject
} else {

// null – nothing at that location
}

38

Null

Calling methods on an object that is null will crash your
program!

// may be a GObject, or null if nothing at (x, y)
GObject maybeAnObject = getElementAt(x, y);
if (maybeAnObject != null) {

int x = maybeAnObject.getX(); // OK
} else {

int x = maybeAnObject.getX(); // CRASH!
}

39

Null

Calling methods on an object that is null will crash your
program! (throws a NullPointerException)

40

Putting it all together

41

Whack-A-Mole
Let’s make Whack-A-Mole!
• Moles should initially appear at random locations on the screen
• If the user clicks a mole, remove it

42

Whack-A-Mole
Let’s add to our program by continuously adding more moles as the
game plays.

43

Normal Program
Run Method

44

public void run() {
while(true) {

update();
pause(DELAY);

}
}

Normal Program
Run Method

45

Normal Program
Run Method

public void run() {
while(true) {

update();
pause(DELAY);

}
}

46

Normal Program
Run Method

public void run() {
while(true) {

update();
pause(DELAY);

}
}

47

Normal Program
Run Method

public void run() {
while(true) {

update();
pause(DELAY);

}
}

48

Normal Program
Run Method

public void run() {
while(true) {

update();
pause(DELAY);

}
}

49

Normal Program
Run Method

50

New Listener Characters
Mouse Moved MethodMouse Listener

51

Program with a Mouse Method
Run Method Mouse Moved Method

52

Program Starts Running
Run Method Mouse Moved Method

53

Add Mouse Listener
Run Method Mouse ListenerMouse Moved Method

addMouseListeners();

54

Program Runs as Usual
Run Method Mouse ListenerMouse Moved Method

55

Mouse Moved!
Run Method Mouse ListenerMouse Moved Method

56

Calls Mouse Moved Method
Run Method Mouse ListenerMouse Moved Method

57

Run Method Mouse ListenerMouse Moved Method

When done, Run continues.

58

Run Method Mouse ListenerMouse Moved Method

Keeps Doing Its Thing…

59

Mouse Moved!
Run Method Mouse ListenerMouse Moved Method

60

Calls Mouse Moved Method
Run Method Mouse ListenerMouse Moved Method

61

When done, Run continues.
Run Method Mouse ListenerMouse Moved Method

62

Recap

•Event-driven programming
•Demo: Click for Daisies
•Demo: Doodler
•Instance Variables
•null and getElementAt
•Demo: Whack-a-Mole

