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Learning Goals

• Learn to respond to mouse events in GraphicsPrograms
• Learn to use instance variables to store information outside of 

methods
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Plan for Today

•Event-driven programming
•Demo: Click for Daisies
•Demo: Doodler
•Instance Variables
•null and getElementAt
•Demo: Whack-a-Mole
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Plan for Today

•Event-driven programming
•Demo: Click for Daisies
•Demo: Doodler
•Instance Variables
•null and getElementAt
•Demo: Rubbish Sweeper
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Events

• event: Some external stimulus that your program can 
respond to.

• event-driven programming: A coding style (common in 
graphical programs) where your code is executed in 
response to user events.
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Events

•Program launches
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Events

•Program launches
•Mouse motion
•Mouse clicking
•Keyboard keys pressed
•Device rotated
•Device moved
•GPS location changed
•and more…
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Events

•Program launches
•Mouse motion
•Mouse clicking
•Keyboard keys pressed
•Device rotated
•Device moved
•GPS location changed
•and more…
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Events

public void run() {
// Java runs this when program launches

}
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Events

public void run() {
// Java runs this when program launches

}

public void mouseClicked(MouseEvent event) {
// Java runs this when mouse is clicked

}
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Events

public void run() {
// Java runs this when program launches

}

public void mouseClicked(MouseEvent event) {
// Java runs this when mouse is clicked

}

public void mouseMoved(MouseEvent event) {
// Java runs this when mouse is moved

}



13

Example: ClickForDaisy
import acm.program.*;
import acm.graphics.*;
import java.awt.*;
import java.awt.event.*; // NEW

public class ClickForDaisy extends GraphicsProgram {

public void run() {
addMouseListeners();

}

// Add a Daisy image at 50, 50 on mouse click
public void mouseClicked(MouseEvent event) {

GImage daisy = new GImage("res/daisy.png", 50, 50);
add(daisy);

}
}
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addMouseListeners()
• You must call addMouseListeners() in your run method if you want 

to respond to mouse events in your program.
• After this is called, your program will start “listening” for mouse

events.
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MouseEvent Objects

• A MouseEvent contains information about the event that 
just occurred:

Method Description
e.getX() the x-coordinate of mouse cursor in the window
e.getY() the y-coordinate of mouse cursor in the window
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Example: ClickForDaisies
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Example: ClickForDaisies
public class ClickForDaisies extends GraphicsProgram {

// Add a Daisy image where the user clicks
public void mouseClicked(MouseEvent event) {
// Get information about the event
double mouseX = event.getX();
double mouseY = event.getY();

// Add Daisy at the mouse location
GImage daisy = new GImage("res/daisy.png", mouseX, mouseY);
add(daisy);

}
}
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Example: ClickForDaisies
public class ClickForDaisies extends GraphicsProgram {

// Add a Daisy image where the user clicks
public void mouseClicked(MouseEvent event) {
// Get information about the event
double mouseX = event.getX();
double mouseY = event.getY();

// Add Daisy at the mouse location
GImage daisy = new GImage("res/daisy.png", mouseX, mouseY);
add(daisy);

}
}



19

Types of Mouse Events
• There are many different types of mouse events.

– Each takes the form:
public void eventMethodName(MouseEvent event) { ...

Method Description
mouseMoved mouse cursor moves
mouseDragged mouse cursor moves while button is held down
mousePressed mouse button is pressed down
mouseReleased mouse button is lifted up
mouseClicked mouse button is pressed and then released
mouseEntered mouse cursor enters your program's window
mouseExited mouse cursor leaves your program's window
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Plan for Today

•Event-driven programming
•Demo: Click for Daisies
•Demo: Doodler
•Instance Variables
•null and getElementAt
•Demo: Whack-a-Mole
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Coding Together: Doodler
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Doodler
private static final int SIZE = 10;
...

public void mouseDragged(MouseEvent event) {
double mouseX = event.getX();
double mouseY = event.getY();
double rectX = mouseX – SIZE / 2.0;
double rectY = mouseY – SIZE / 2.0;
GRect rect = new GRect(rectX, rectY, SIZE, SIZE);
rect.setFilled(true);
add(rect);

}
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Doodler
public void mouseDragged(MouseEvent event) {

double mouseX = event.getX();
double mouseY = event.getY();
double rectX = mouseX – SIZE / 2.0;
double rectY = mouseY – SIZE / 2.0;
GRect rect = new GRect(rectX, rectY, SIZE, SIZE);
rect.setFilled(true);
add(rect);

}
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Doodler
public void mouseDragged(MouseEvent event) {

double mouseX = event.getX();
double mouseY = event.getY();
double rectX = mouseX – SIZE / 2.0;
double rectY = mouseY – SIZE / 2.0;
GRect rect = new GRect(rectX, rectY, SIZE, SIZE);
rect.setFilled(true);
add(rect);

}
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Doodler
public void mouseDragged(MouseEvent event) {

double mouseX = event.getX();
double mouseY = event.getY();
double rectX = mouseX – SIZE / 2.0;
double rectY = mouseY – SIZE / 2.0;
GRect rect = new GRect(rectX, rectY, SIZE, SIZE);
rect.setFilled(true);
add(rect);

}
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Doodler
public void mouseDragged(MouseEvent event) {

double mouseX = event.getX();
double mouseY = event.getY();
double rectX = mouseX – SIZE / 2.0;
double rectY = mouseY – SIZE / 2.0;
GRect rect = new GRect(rectX, rectY, SIZE, SIZE);
rect.setFilled(true);
add(rect);

}
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Recap: Events
1) User performs some action, like moving / clicking the mouse.
2) This causes an event to occur.
3) Java executes a particular method to handle that event.
4) The method's code updates the screen appearance in some way.
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Revisiting Doodler
public void mouseDragged(MouseEvent event) {

double mouseX = event.getX();
double mouseY = event.getY();
double rectX = mouseX – SIZE / 2.0;
double rectY = mouseY – SIZE / 2.0;
GRect rect = new GRect(rectX, rectY, SIZE, SIZE);
rect.setFilled(true);
add(rect);

}

What if we wanted the same GRect to track the 
mouse, instead of making a new one each time?
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Plan for Today

•Event-driven programming
•Demo: Click for Daisies
•Demo: Doodler
•Instance Variables
•null and getElementAt
•Demo: Whack-a-Mole
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Instance Variables
private type name;  // declared outside of any method

• Instance variable: A variable that lives outside of any method.
– The scope of an instance variable is throughout an entire file (class).

– Useful for data that must persist throughout the program, or that 
cannot be stored as local variables or parameters (event handlers).

– It is bad style to overuse instance variables
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Example: MouseTracker
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Plan for Today

•Event-driven programming
•Demo: Click for Daisies
•Demo: Doodler
•Instance Variables
•null and getElementAt
•Demo: Whack-a-Mole
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getElementAt
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getElementAt returns the object at this location on the 
canvas

GObject objectHere = getElementAt(x, y);

getElementAt
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getElementAt returns the object at this location on the 
canvas

GObject objectHere = getElementAt(x, y);
if (objectHere != null) {

// do something with objectHere
} else {

// null – nothing at that location
}

getElementAt
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Null

Null is a special variable value that objects can have that 
means “nothing”.  Primitives cannot be null.

If a method returns an object, it can return null to signify 
“nothing”. (just say return null;)

// may be a GObject, or null if nothing at (x, y)
GObject maybeAnObject = getElementAt(x, y);
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Null

You can check if something is null using == and !=.

// may be a GObject, or null if nothing at (x, y)
GObject maybeAnObject = getElementAt(x, y);
if (maybeAnObject != null) {

// do something with maybeAnObject
} else {

// null – nothing at that location
}
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Null

Calling methods on an object that is null will crash your 
program!

// may be a GObject, or null if nothing at (x, y)
GObject maybeAnObject = getElementAt(x, y);
if (maybeAnObject != null) {

int x = maybeAnObject.getX(); // OK
} else {

int x = maybeAnObject.getX(); // CRASH!
}
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Null

Calling methods on an object that is null will crash your 
program! (throws a NullPointerException)
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Putting it all together
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Whack-A-Mole
Let’s make Whack-A-Mole!
• Moles should initially appear at random locations on the screen
• If the user clicks a mole, remove it
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Whack-A-Mole
Let’s add to our program by continuously adding more moles as the 
game plays.
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Normal Program
Run Method
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public void run() { 
while(true) {

update();
pause(DELAY);

}
}

Normal Program
Run Method
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Normal Program
Run Method

public void run() { 
while(true) {

update();
pause(DELAY);

}
}
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Normal Program
Run Method

public void run() { 
while(true) {

update();
pause(DELAY);

}
}
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Normal Program
Run Method

public void run() { 
while(true) {

update();
pause(DELAY);
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}
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Normal Program
Run Method

public void run() { 
while(true) {

update();
pause(DELAY);

}
}
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Normal Program
Run Method
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New Listener Characters
Mouse Moved MethodMouse Listener
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Program with a Mouse Method
Run Method Mouse Moved Method
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Program Starts Running
Run Method Mouse Moved Method
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Add Mouse Listener
Run Method Mouse ListenerMouse Moved Method

addMouseListeners();
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Program Runs as Usual
Run Method Mouse ListenerMouse Moved Method
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Mouse Moved!
Run Method Mouse ListenerMouse Moved Method
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Calls Mouse Moved Method
Run Method Mouse ListenerMouse Moved Method
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Run Method Mouse ListenerMouse Moved Method

When done, Run continues.
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Run Method Mouse ListenerMouse Moved Method

Keeps Doing Its Thing…
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Mouse Moved!
Run Method Mouse ListenerMouse Moved Method
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Calls Mouse Moved Method
Run Method Mouse ListenerMouse Moved Method
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When done, Run continues.
Run Method Mouse ListenerMouse Moved Method
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Recap

•Event-driven programming
•Demo: Click for Daisies
•Demo: Doodler
•Instance Variables
•null and getElementAt
•Demo: Whack-a-Mole


